首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为研究不同注气压力与注气温度对CO2置换驱替煤层CH4的影响规律,利用Materials Studio分子动力学模拟软件,通过煤体在2元组分混合气体间的竞争吸附量、竞争吸附热及能量分布等变化规律,从微观研究煤吸附CH4与CO2之间的机理,并利用物理实验平台,选用3种高变质程度煤进行注CO2置换驱替CH4实验。结果表明:同一种变质程度煤,随着注气压力或注气温度的增大,置换率呈增长趋势、驱替比呈下降趋势、CO2突破时间变短;相同注气压力与注气温度时煤的变质程度越高,置换效率越大、驱替比越小、CO2突破时间越长。并且注气压力对于CO2置换驱替CH4的效果要优于注气温度。  相似文献   

2.
煤层注CO2促排瓦斯主要包含气体置换和流动驱替两种作用机理,但在注气过程中哪种机理占主导地位,能否将这两种机理剥离开还需要进一步研究。为了研究注CO2促排煤中甲烷的机理及其主导地位,进行了低应力载荷条件下分层预压成型煤样注CO2置换/驱替煤层甲烷的实验。实验结果表明:在置换和驱替最初246 min内,出气口没有检测到CO2气体,注入的CO2气体全部驻留在煤体中,没有随气流排出,宏观表现为仅有置换作用而没有驱替作用。在之后的1 180 min内,注入的CO2气体一部分继续驻留在煤体中,另一部分随气体流出,宏观表现为既有置换作用又有驱替作用,置换作用减弱,驱替作用增加的过程。在注气实验后期,随着注气时间的增加,煤体中CO2逐渐吸附平衡,驱替作用开始逐渐占据主导地位。截止到实验结束时,整个阶段过程中,置换作用累计贡献率为53.32%,驱替作用累计贡献率为46.68%,置换作用累计贡献率大于驱替作用累计贡献率,随着注气不断进行驱替作用累计贡献率会逐渐上升,会出现超过置换作用累计贡献率的现象。  相似文献   

3.
为了揭示注气压力对置换煤层瓦斯效应的影响,开展了等压扩散和高压注气2种条件下CO_2对煤中CH_4置换试验研究。试验结果表明:在置换源气体充入量相等的条件下等压扩散试验中CO_2对煤中CH_4的置换量大于高压注气试验的置换量,且等压扩散条件下CO_2置换CH_4效率维持在0.44 cm~3/cm~3左右,而高压注气条件下CO2置换CH_4效率却随注入量的增加而持续增加,但其增加率逐渐衰减。等压扩散条件下吸附平衡后系统总压略有下降,降幅一般为8%左右;高压注气条件下吸附平衡后系统总压呈持续上升规律,最大增幅为60%。研究成果对该项技术工程应用的启示是:井下煤层注气置换/驱替煤层瓦斯时,不一定要追求高的注气压力,采用低压注气也可收到良好的促排瓦斯效果,又能大幅度提高注气的安全可靠性。  相似文献   

4.
为研究注CO2增产煤层气过程中注气温度对煤层渗透特性变化的影响,利用自主研发的CO2置换驱替CH4实验系统,在注气温度为40,50,60 ℃条件下进行CO2置换驱替CH4实验,定量分析置换驱替过程中出口气体流量、孔隙压力以及煤层渗透率等变化规律。研究结果表明:在实验测试的40~60 ℃范围内,提高CO2注入温度有助于产出更多的CH4及封存CO2,CO2注入温度越高,出口混合气体流量和CH4气体流量越大,呈现出先升高后降低并趋于稳定的变化趋势,实验结束时置换体积比分别为2.704,2.741和2.595,注气温度为60 ℃时驱替效果较好,每产出单位体积的CH4注入的CO2量最少;煤层孔隙压力随注气时间呈现先逐渐上升后趋于平稳的变化趋势,逐渐趋近注气压力0.8 MPa;注CO2置换驱替CH4及提高CO2注入温度会降低煤层的渗透性,注气温度恒定时,渗透率随注气时间增加呈现先逐渐降低后趋于平稳的变化规律,注气温度由40 ℃升至60 ℃时,渗透率从0.017 1×10-15 m2下降至0.009 8×10-15 m2,降低幅度为34.50%~42.69%。  相似文献   

5.
为了提高瓦斯抽采效果,以西沟煤矿5315工作面注气瓦斯抽采方案为工程背景,开展注CO2促抽煤层瓦斯模拟研究。通过对注CO2驱替煤层瓦斯机理研究,结合注气瓦斯抽采过程中的气体运移场和煤体变形场的耦合关系,建立了注CO2促抽瓦斯固气耦合模型;利用COMSOL Multiphysics软件模拟了工作面注气瓦斯抽采,对比分析了注气瓦斯抽采与本煤层顺层钻孔抽采的瓦斯抽采效果,论证了煤层注CO2促抽煤层瓦斯工艺的可行性与有效性。研究结果表明:在工作面瓦斯抽采90 d后注入CO2,对瓦斯抽采的促抽效果明显,煤层瓦斯压力降至0.46~0.49 MPa,瓦斯含量降低至4.22 m3/t;在90 d后注入CO2促抽煤层瓦斯,在瓦斯抽采至第180 d时,抽采效果较钻孔瓦斯抽采明显提高,煤层瓦斯压力降低了7.84%~9.26%,残余瓦斯含量减少了18.63%。通过工程实测可知,5315工作面在注入CO2促抽煤层瓦斯抽采后的瓦斯压力与瓦斯含量分别降低至0.48 MPa和4.76 m3/t,有效降低了煤与瓦斯突出的危险性。  相似文献   

6.
为研究CO2驱替CH4过程中注气压力对气体解吸特性的影响,采用自主搭建的驱替实验平台,在0.6,0.8,1.0 MPa不同注气压力下进行驱替实验,研究CO2驱替CH4过程中煤层温度、气体浓度、置换效率和渗透率等变化规律。实验结果表明:提高CO2注气压力可提高CO2置换驱替煤层CH4的效果。随着注气压力增大,CH4累计解吸量增大,CO2突破时间越短,CO2封存量越大,置换效率升高,驱替比下降。注气压力为0.6,0.8,1.0 MPa时,CH4累计解吸量分别为90.2,94.1,97.8 L;CO2封存量分别为19.73,19.92,20.21 mL/g;置换效率由76.9%上升到80.2%再到82.9%,驱替比由3.28下降到3.17再到3.09。注气驱替CH4过程中煤层温度升高,可分为低速升温、高速升温和趋于平缓阶段。煤层温度最高变化量分别为9.4,11.5,12.7 ℃。同一注气压力下,煤层渗透率变化可分为缓慢增长、急剧下降和趋于稳定阶段。  相似文献   

7.
为探究注气置换抽采煤层瓦斯的效果,揭示注弱吸附性气体N2在等压扩散和高压注入2种条件下置换煤中CH4的机理,采用自行搭建的含瓦斯煤多元气体置换试验装置,开展等压扩散和高压注入2种条件下注N2置换煤中CH4的试验研究.研究结果表明:在注N2量相同的条件下,等压扩散置换量始终高于高压注气置换量,在等压扩散下N2置换CH4效...  相似文献   

8.
为研究变质程度对CO_2置换煤中CH_4效应的影响规律,选用了无烟煤、瘦煤和气肥煤3种不同变质程度的煤样,在CH_4吸附平衡压力分别为0.75 MPa和1.3 MPa的条件下,进行了高压注CO_2置换煤中CH_4实验。实验结果表明:初始CH_4吸附平衡压力相同的条件下,CO_2的注气压力越大(即注入量越大),CO_2对CH_4的置换量越大,置换率也越大,同时吸附置吸比也越大;初始CH_4吸附平衡压力越高,注气后达到相同压力下的置换量越小,置换CH_4越困难。煤的变质程度对置换效应的影响规律为,煤的变质程度越高,CO_2对CH_4的置换量越大,但CO_2对CH_4置换率却随之减小,说明低变质程度煤中的CH_4更容易被置换。  相似文献   

9.
为观察含CH_4煤岩注入CO_2后力学和渗透性能的变化,用自制三轴吸附解吸渗流试验装置开展试验,研究型煤试件内气体种类和注气压力对注CO_2煤岩强度、渗透性和应变等参数变化的影响。试验结果表明:含CH_4煤岩注入CO_2后,单轴压缩应力-应变曲线与未注入CO_2的总体变化趋势相同,但煤岩强度等参数随注气压力的变化而变化。注入等孔隙压CO_2后,含CH_4煤岩的强度和弹性模量均明显上升,但煤岩中CH_4渗透率呈现下降趋势;随着CO_2注入压力的增加,煤样的强度和弹性模量逐渐下降,而CH_4渗透率逐渐增强,注气压力每增加1 MPa,煤岩强度平均下降0.095MPa,CH_4气体渗透率平均增加1 m D。  相似文献   

10.
为研究井下卸压抽采时瓦斯流动规律,建立煤层渗透率演化模型。为建该模型将煤体简化为有2组相互垂直节理发育的等效连续介质,假定瓦斯在煤体裂隙中的流动符合立方定律,考虑煤基质对吸附性气体的吸附膨胀作用和外荷载对煤的压缩变形作用,不考虑孔隙压力对裂隙张开的影响。从应力条件和孔隙压力2个方面,结合煤样渗透率试验,对该模型进行有效性验证。结果表明,渗透率模型能反映应力和低孔隙压力对煤样渗透率的影响,但不能体现高孔隙压力对煤样损伤导致的渗透率增大作用。  相似文献   

11.
为探究不同尺寸煤样吸附瓦斯特性的差异,以漳村矿3#煤为研究对象,利用自主研制的多功能煤吸附/解吸瓦斯参数测定试验装置,开展粒状煤和块状煤的等温吸附试验,测定不同吸附压力下的吸附量和变形量。试验结果表明:在相同的吸附平衡压力下,吸附量随煤样粒径的增大而减小;粒状煤吸附瓦斯的能力大于块状煤,原因是粒状煤的有效比表面比块状煤大,增加的微孔吸附瓦斯使得煤吸附瓦斯量增加。块状煤的变形量随吸附平衡压力而增大,但增加量逐渐减小。经讨论分析可知:煤体吸附膨胀变形是煤基质吸附膨胀和气体压力压缩共同作用的结果;粒状煤测定的吸附常数应用到煤层数值模拟中会引起一定的误差。  相似文献   

12.
为探究不同尺寸煤样吸附瓦斯特性的差异,以漳村矿3#煤为研究对象,利用自主研制的多功能煤吸附/解吸瓦斯参数测定试验装置,开展粒状煤和块状煤的等温吸附试验,测定不同吸附压力下的吸附量和变形量。试验结果表明:在相同的吸附平衡压力下,吸附量随煤样粒径的增大而减小;粒状煤吸附瓦斯的能力大于块状煤,原因是粒状煤的有效比表面比块状煤大,增加的微孔吸附瓦斯使得煤吸附瓦斯量增加。块状煤的变形量随吸附平衡压力而增大,但增加量逐渐减小。经讨论分析可知:煤体吸附膨胀变形是煤基质吸附膨胀和气体压力压缩共同作用的结果;粒状煤测定的吸附常数应用到煤层数值模拟中会引起一定的误差。  相似文献   

13.
为了解决煤与瓦斯突出煤层穿层钻孔施工和水力化措施期间的瓦斯喷孔问题,通过实验和分析研究了水对瓦斯煤流固耦合系统解吸和渗流的影响。煤体含水率增加后,瓦斯解吸的初速度下降,解吸量变小;煤层中注水后,煤体吸附瓦斯量减少,游离瓦斯量和煤的渗透率增加,瓦斯流动更容易,二者共同的影响减少了瓦斯喷孔发生概率。现场实验表明:先注后冲技术降低喷孔率39%,钻孔成孔率提高32%,冲泄煤量提高2.3倍,瓦斯抽出率平均提高10.4%。先注后冲技术与传统水力冲孔技术相比能明显抑制瓦斯喷孔、增加冲泄煤量、提高瓦斯抽出率,是一种安全可靠的煤层增透和预防瓦斯喷孔技术。  相似文献   

14.
为了解决煤与瓦斯突出煤层穿层钻孔施工和水力化措施期间的瓦斯喷孔问题,通过实验和分析研究了水对瓦斯煤流固耦合系统解吸和渗流的影响。煤体含水率增加后,瓦斯解吸的初速度下降,解吸量变小;煤层中注水后,煤体吸附瓦斯量减少,游离瓦斯量和煤的渗透率增加,瓦斯流动更容易,二者共同的影响减少了瓦斯喷孔发生概率。现场实验表明:先注后冲技术降低喷孔率39%,钻孔成孔率提高32%,冲泄煤量提高2.3倍,瓦斯抽出率平均提高10.4%。先注后冲技术与传统水力冲孔技术相比能明显抑制瓦斯喷孔、增加冲泄煤量、提高瓦斯抽出率,是一种安全可靠的煤层增透和预防瓦斯喷孔技术。  相似文献   

15.
为更准确反映抽采过程中的煤层瓦斯(甲烷)运移过程,将煤岩视为孔隙-裂隙双重结构、双渗透率非均匀弹性介质,考虑基质瓦斯渗流作用,结合地下水、瓦斯吸附/解吸特性、煤岩变形和渗透率演化等因素的耦合作用,建立考虑基质瓦斯渗流的煤层流固耦合模型;数值模拟地面瓦斯抽采过程,分析煤层瓦斯运移规律和基质渗流作用对瓦斯抽采的影响。研究表明:基质瓦斯和裂隙瓦斯的压力均随时间的增加而降低,两者差值先增大后减小;在模拟工况下,单位时间内基质瓦斯渗流量仅占流入裂隙瓦斯量的0.5%。基质渗流对瓦斯抽采的产能及储层压力有影响;考虑基质瓦斯渗流的双孔隙双渗透率模型预测的产气速率和储层压力下降幅度均小于双孔隙单渗透率模型。  相似文献   

16.
在单一煤体吸附瓦斯的基础上,选用某煤矿硬煤和软煤,按照不同的厚度比进行分层混合,模拟煤层中软分层。运用Langmuir单分子层吸附理论,对混合煤样中软分层的吸附性质及其存在对煤与瓦斯突出的影响进行了研究。实验中利用自行研制的高压瓦斯吸附仪,对不同厚度比的混合煤样吸附瓦斯气体的等温吸附曲线、吸附常数a、b进行了实验分析,并得出了吸附量随压力的变化形态和吸附常数a、b随硬煤和软煤厚度比的变化形态。分析结果发现在软分层与其上覆硬煤层厚度近似相等时,发生突出的危险性最大,并通过理论分析说明了软分层的存在,煤层易发生煤与瓦斯突出的原因。可为煤与瓦斯突出机理的研究提供理论基础和思路。  相似文献   

17.
为了解决复杂环境下立井揭煤前煤层瓦斯压力的可靠测定,基于揭煤井筒瓦斯地质特征、煤岩体物理力学性质,应用COMSOL软件模拟揭煤工作面在接近目标煤层时,井筒周围煤岩的地应力分布特征,直观展现了目标煤层中的应力分布结果。模拟结果表明,立井工作面距煤层的垂直距离为7 m时,煤层中会形成一个近似于环形的卸压圈,卸压半径为16 m,因此煤层瓦斯压力测试孔的终孔位置应布置在井筒中心线16 m以外的原始地应力区,以保证测压点瓦斯压力不受揭煤井筒卸压区的影响,令测压结果准确可靠,从而更好地预测煤与瓦斯突出区域的危险性。同时,结合立井揭煤工作面的水文地质特征和井筒严重淋水情况,自主研发并应用了瓦斯测压孔"两堵一注"封孔材料及特定的封孔工艺,进一步保障了封孔质量和瓦斯压力测试结果的可靠性。最后,依据测压结束时测压管内的实际水压情况,对测压结果进行修正,并依据实测瓦斯含量,采用间接法对所测得的瓦斯压力进行验证,实测值在反算得到的瓦斯压力值域内,表明此方法有效可行。  相似文献   

18.
王志军      李宁    魏建平    马小童 《中国安全生产科学技术》2017,13(4):76-80
为揭示煤中瓦斯解吸过程中加载微波作用对解吸特性的影响,分析探讨了微波辐射促进煤层瓦斯解吸的基本原理,研制了微波作用下煤中瓦斯解吸实验装置,对微波间断加载作用及无微波作用条件下煤中瓦斯解吸特性进行了对比实验研究。实验表明:微波作用对煤中瓦斯解吸具有明显的促进作用,微波作用时间越长,解吸量越大,解吸率越高。在微波作用40 s条件下,微波间断加载作用使得煤样瓦斯解吸量增加290%,解吸率达到87%,解吸速度最大提高率为1 020%。  相似文献   

19.
在煤层瓦斯抽采工艺中,抽采钻孔周围煤层瓦斯压力分布状况决定了最佳抽采时间和抽采半径。为研究抽采钻孔周围煤层瓦斯压力分布情况,通过理论分析和数值模拟,构建抽采钻孔周围煤层瓦斯流量表达式;应用达西渗流定律,推导出抽采钻孔周围煤层瓦斯压力解析表达式;采用瓦斯抽采半径随抽采时间的变化速率作为确定瓦斯抽采最佳时间的依据,给出临界值,并进行工程应用。结果表明:随着测定点与钻孔中心距离的增加,煤层瓦斯压力逐步上升,最终趋于原始值;随着抽采时间延长,瓦斯压力大致呈指数规律下降;瓦斯抽采半径随抽采时间的变化速率临界值可暂定为0.47。  相似文献   

20.
为研究采空区瓦斯富集机制,解决瓦斯抽采浓度偏低的问题,用自制的多元气体富集试验装置,模拟采空区不同浓度瓦斯的运移过程,并基于分子扩散理论进行分析。结果表明,瓦斯和空气的密度差产生的浮力导致采空区内瓦斯浓度自下而上整体呈增高趋势,并在其上部形成瓦斯富集区;由于混合气体密度差使气体浮力作用的压力扩散效应强于分子扩散效应,采空区内形成较明显的瓦斯分层现象;采空区遗煤内本身赋存的瓦斯浓度越高,瓦斯富集区内瓦斯浓度越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号