首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We examined phylogenetic relationships among three Bathymodiolus species in Japanese waters and Bathymodiolus spp. from the Manus Basin by two different approaches. Two-dimensional gel electrophoresis allowed us to compare 263–407 (average=318) proteins, giving comprehensive information on genetic distances among the species. The neighbor-joining tree presented two clusters: (1) B. japonicus and B. platifrons and (2) B. septemdierum and B. sp. Members of the first cluster contain methanotrophic endosymbiotic bacteria and members of the second cluster contain thioautotrophic endosymbionts. DNA sequencing of a fragment (415 bp) of mitochondrial cytochrome c oxidase subunit I (COI) provided a neighbor-joining tree with the same topology as that derived from protein analysis. Inspection of intraspecific variation in COI in B. japonicus and B. platifrons revealed no genetic differentiation between mussel populations of either species from cold-water seeps versus hydrothermal vents, suggesting high adaptability of these Bathymodiolus species to deep-sea chemosynthetic environments. Our results indicated genetic exchanges between mussels from distant localities, suggesting that a limited dispersal capability of the larvae is not the likely factor leading to speciation events in these Bathymodiolus species.Communicated by T. Ikeda, Hakodate  相似文献   

2.
The tropical lancelet Asymmetron lucayanum (= Epigonichthys lucayanus) is distributed from the western Indian Ocean to the central Pacific Ocean, and the western Atlantic Ocean. Molecular phylogenetic analysis of mitochondrial cytochrome c oxidase subunit I (COI) sequences (1,035 bp) of A. lucayanum (80 specimens from seven localities) showed clearly that this species is genetically distinguished into three major groups of geographical populations based on neighbor-joining tree using maximum likelihood distance (HKY model with invariable sites and gamma correction), suggesting the existence of three cryptic species. Our genetic data show that (1) inter-oceanic divergence time between Clade B (the West-Central Pacific) and Clade C (the Atlantic) (d = 6.6%, ca. 12 million years ago) was smaller than intra-oceanic divergence time between Clade A (the Indo-West Pacific) and Clade B (d=39.5%, ca. 100 million years ago); (2) there are two cryptic species in the West Pacific in sympatry; and (3) high gene flow is implied between the Maldives and the Ryukyus in Clade A (10,000 km distance), the Philippines and Hawaii in Clade B (8,500 km distance), and Barbados and Bermuda in Clade C (2,200 km distance).  相似文献   

3.
Eurythoe complanata (Pallas 1766) has been considered a cosmopolitan species with a great morphological similarity across its geographic range. To elucidate whether E. complanata is actually a single species, genetic (cytochrome oxidase subunit I and allozymes) and morphological differences were compared among specimens from the Pacific, Caribbean, and South Atlantic Oceans. Large levels of COI divergence (10–22%) and diagnostic allozyme loci identified three cryptic species: one in the eastern Pacific and two in the Atlantic, with one being morphologically differentiated and found only in islands. COI sequences between Pacific and Atlantic lineages were much more divergent than those of other transisthmian invertebrates, indicating their split before the Panama Isthmus closure or a faster evolutionary rate of COI for this species. The existence of two Atlantic species may be a consequence of parapatric speciation followed by a secondary invasion or even a sympatric speciation in the Atlantic oceanic islands.  相似文献   

4.
Molecular systematic studies provide evidence for three new species of Bathymodiolus-like hydrothermal vent mussels (Bivalvia: Mytilidae) from relatively shallow waters (depth less than 750 m) associated with the Kermadec Arc off northern New Zealand. Mitochondrial COI sequences from the three putative new species differed substantially from those of other known bathymodiolin species from the Pacific and Indian Oceans. Population genetic analysis of one of these species (Bathymodiolus new species NZ-1) revealed heterogeneity in allozyme gene frequencies between samples collected from two seamounts about 50 km apart. Factors that might contribute to genetic differentiation between neighbouring seamounts are discussed.Communicated by M.S. Johnson, Crawley  相似文献   

5.
Many marine species, including mussels in the Mytilus edulis species group (i.e. M. edulis L., M. galloprovincialis Lamarck, and M. trossulus Gould), have an antitropical distribution pattern, with closely related taxa occurring in high latitudes of the northern and southern hemispheres but being absent from the tropics. We tested four hypotheses to explain the timing and route of transequatorial migration by species with antitropical distributions. These hypotheses yield different predictions for the phylogenetic relationship of southern hemisphere taxa relative to their northern counter-parts. The three Mytilus species were used to test these hypotheses since they exhibit a typical antitropical distribution and representative taxa occur in both the Pacific and Atlantic. Two types of mtDNA lineages were found among populations of mussels collected from the southern hemisphere between 1988 and 1996; over 90% of the mtDNA lineages formed a distinct subclade which, on average, had 1.4% divergence from haplotypes found exclusively in northern Atlantic populations of M. galloprovincialis. These data indicate that southern hemisphere mussels arose from a migration event from the northern hemisphere during the Pleistocene via an Atlantic route. The remainder of the southern hemisphere lineages (<10%) were very closely related to mtDNA haplotypes found in both M. edulis and M. galloprovincialis in the northern hemisphere, suggesting a second, more recent migration to the southern hemisphere. There was no evidence that southern hemisphere mussels arose from Pacific populations of mussels. Received: 8 December 1998 / Accepted: 8 November 1999  相似文献   

6.
In order to investigate how episodes of geological and climatic change have influenced the distribution and evolutionary diversification of Arctic to cold temperate-North Atlantic seaweed species, intraspecific genetic variation was analyzed among isolates of the sublittoral, benthic red alga Phycodrys rubens (collected between June 1992 and January 1994). Rooted phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences and the plastid encoded Rubisco spacer sequences suggest that P. rubens invaded the North Atlantic from the Pacific shortly after the opening of the Bering Strait (3 to 3.5 million years ago), colonizing both the western and eastern Atlantic coasts. Based on these data we further hypothesize that P. rubens survived along the European coasts during the more recent Pleistocene glaciations, while becoming locally extinct along the North American Atlantic coasts. Following retraction of the last ice sheet, the western Atlantic coast was colonized a second time from the Pacific. The presence of two distinct genetic types (based on ITS and Rubisco sequences) along the European coasts is postulated to be a result of isolation and subsequent differentiation. This is likely because ice-free areas are known to have existed in northern Scotland and Norway during the last glaciation. The presence of an East Atlantic genetic type along the West Atlantic coast is believed to be a recent introduction (caused by human activity) of P. rubens to Newfoundland.  相似文献   

7.
Blue mussels in the genus Mytilus first arrived in the Atlantic Ocean from the Pacific during the Pliocene, following the opening of the Bering Strait. Repeated periods of glaciation throughout the Pleistocene led to re-isolation of the two ocean basins and the allopatric divergence of Mytilus edulis in the Atlantic and M. trossulus in the Pacific. Mytilus trossulus has subsequently colonized the northwest Atlantic (NW Atlantic) so that the two species are presently sympatric and hybridize throughout much of the Canadian Maritimes and the Gulf of Maine. To estimate when M. trossulus arrived in the NW Atlantic, we have examined sequence variation within a portion of the female mtDNA lineage large untranslated region (F-LUR) for 156 mussels sampled from three Pacific and eleven Atlantic populations of M. trossulus. Although we found no evidence of reciprocal monophyly for Pacific and NW Atlantic M. trossulus, limited gene flow between ocean basins has led to the divergence of unique sequence clades within each ocean basin. In contrast, relative genetic homogeneity indicates high levels of gene flow within each basin. Coalescence-based analysis of the F-LUR sequences suggests that M. trossulus recolonized the NW Atlantic from the northeast Pacific subsequent to a demographic expansion in the Pacific that occurred ~96,000 years before present (ybp). Estimates of timing of divergence for Pacific and NW Atlantic populations and the time since expansion among NW Atlantic sequence clades indicate that M. trossulus arrived in the NW Atlantic more recently, between 20,000 and 46,000 ybp. Given that these estimates overlap with the dates of peak ice in the NW Atlantic during the last glacial maximum (LGM, ~18,000–21,000 ybp), we suggest that colonization of the NW Atlantic by M. trossulus occurred during, but more likely just subsequent to, the LGM and was followed by rapid temporal and spatial expansion in the region.  相似文献   

8.
In spite of historical and current interest in Ciona intestinalis and its congeners, little is known about evolutionary relationships among the members of the genus Ciona. Here 744-bp sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene are used to examine phylogenetic relationships among three described species (C. intestinalis, C. roulei, C. savignyi) sampled from multiple coastal sites in the Northeast Pacific (CA, USA), Northwest Atlantic (from New Hampshire to Connecticut, USA), Northeast Atlantic (Sweden and The Netherlands), and Mediterranean (Banyuls-sur-Mer, France). The samples were collected in June–October 2005. The COI sequences of Northeast Pacific/Mediterranean (Type A) and Northwest Atlantic (Type B) C. intestinalis differ by ∼12% and C. roulei is nested within Type B C. intestinalis. Ciona savignyi differs from all other haplotypes by 13–16%. A previously undescribed but morphologically distinct Ciona sp. found at the Banyuls-sur-Mer site was >10% divergent from all other haplotypes. Although these data arise from a single gene study, they indicate that further elucidation of species relationships within the genus and of the species’ distributions will be needed if continuing invasions and potential reproductive isolation are to be investigated.  相似文献   

9.
Portions of the mitochondrial genome (ca. 4 kb), encoding three protein-coding (COI, ND4L, ND6) and two ribosomal RNA (srRNA, lrRNA) genes, were sequenced for all six currently recognized species, plus one form, of the pelagic calanoid copepod genus Neocalanus. In Neocalanus gracilis, the ND6 gene was not found in the sequenced portion of the mitochondrial genome. Unambiguously aligned sequences were subjected to Bayesian, maximum-likelihood, maximum-parsimony, and neighbor-joining analyses using Eucalanus bungii as an outgroup. The resultant tree topologies from these four methods were congruent, robust, and all nodes were supported by high bootstrap values and posterior probabilities of 92–100%. Two tropical and subtropical species (N. gracilis and N. robustior) occupied the most basal position, and a subantarctic (N. tonsus) and three subarctic Pacific species (N. cristatus, N. plumchrus, and N. flemingeri) diverged subsequently. Transequatorial dispersal of the ancestral population during glaciations is suggested for this pattern of speciation, in which sister clades exhibited antitropical distributions. Although the area of ocean is much broader in the subantarctic than the subarctic Pacific, a higher number of species occur in the subarctic Pacific (three) than the subantarctic (one). The possibility that marginal seas, such as Japan Sea and Okhotsk Sea, function as natal areas for the divergence of species is discussed.  相似文献   

10.
Evolutionary diversification of the broadly distributed copepod sibling species complex Eurytemora affinis has been documented in the northern hemisphere. However, the fine scale geographic distribution, levels of genetic subdivision, evolutionary, and demographic histories of European populations have been less explored. To gain information on genetic subdivision and to evaluate heterogeneity among European populations, we analyzed samples from 8 locations from 58° to 45°N and 0° to 23°E, using 549 base pairs of the mitochondrial cytochrome oxidase subunit I (COI) gene. We discovered three distinct lineages of E. affinis in Western Europe, namely the East Atlantic lineage, the North Sea/English Channel (NSEC) lineage, and the Baltic lineage. These geographically separated lineages showed sequences divergence of 1.7–2.1%, dating back 1.9 million years (CI: 0.9–3.0 My) with no indication of isolation by distance. Genetic divergence in Europe was much lower than among North American lineages. Interestingly, genetic structure varied distinctively among the three lineages: the East Atlantic lineage was divided between the Gironde and the Loire populations, the NSEC lineage comprised one single population unit spanning the Seine, Scheldt and Elbe rivers and the third lineage was restricted to the Baltic Proper (Sweden). We revealed high haplotype diversity in the East Atlantic and the Baltic lineages, whereas in the NSEC lineage haplotype diversity was comparatively low. All three lineages showed signs of at least one demographic expansion event during Pleistocene glaciations that marked their genetic structure. These results provide a preliminary overview of the genetic structure of E. affinis in Europe.  相似文献   

11.
We examined the population structure of the black tiger prawn, Penaeus monodon Fabricius, 1798, in the Indo-West Pacific by analyzing the geographic distribution of elongation factor 1-alpha intron sequences from specimens collected during the winter and spring of 1997. Both the molecular phylogeny of alleles and F-statistics indicated very strong differentiation between populations from the western Indian Ocean and western Pacific. This pattern is concordant with other recent studies of marine species in this region, implying that the Indo-Australian Archipelago represents a biogeographic break between populations in the Indo-West Pacific. F ST-values among populations in the western Indian Ocean also indicate structure within this region, whereas no structure was found among western Pacific populations. Nucleotide diversity was significantly lower in the western Indian Ocean populations than in the western Pacific, implying that the populations have regional differences in demographic history. Received: 16 November 1998 / Accepted: 26 May 1999  相似文献   

12.
The phylogenetic relationships among local populations of undescribed vestimentiferan species that belong to the genera Lamellibrachia and Escarpia and had been collected at six sites around Japan were analyzed on the basis of the partial (1023 bp) nucleotide sequences of the mitochondrial gene for cytochrome oxidase I (COI), using a pogonophoran and a polychaete as outgroups. The identical amino acid sequence was deduced from the nucleotide sequence obtained from each of the vestimentiferans analyzed. The strong similarity among deduced amino acid sequences of COI suggested a close relationship between vestimentiferans and pogonophorans. On the basis of the phylogenetic relationships, the analyzed vestimentiferan populations were classified tentatively as five species. The genetic differentiation of vestimentiferans was suggested to occur bathymetrically as well as being a consequence of horizontal segregation. Two of these tentatively identified species inhabit both a hydrothermal area and a cold seep area, as is the case for some species of bivalves that belong to the genera Bathymodiolus and Calyptogena. Received: 28 August 1996 / Accepted: 2 October 1996  相似文献   

13.
Morphologically plastic, cryptic, or geographically widespread species pose similar challenges to the evolutionary biologist: their taxonomic status is often unclear yet must be known to study almost any aspect of their biology, ecology, evolution, or biogeography. The marine bryozoan Membranipora membranacea (L.) is morphologically plastic and geographically widespread in temperate oceans of the Northern and Southern Hemispheres, and its taxonomy is unclear. This study examined genetic relationships among allopatric populations and sympatric morphs of this species, or species complex. Colonies were collected from 1992 to 1995. Allozymes were used to elucidate the relationships among four widely separated populations, two in the North Atlantic and two in the North Pacific Ocean. Allozymes and mtDNA sequencing were used to clarify the genetic relationships among three sympatric morphs that might correspond to the species M. villosa Hincks and M. membranacea in the northeastern Pacific (Washington State). Populations in the North Atlantic and North Pacific had no fixed allelic differences at the loci tested but were separated by an average Nei's genetic distance of 0.581, suggesting their near-sibling species status. Populations from Friday Harbor (Washington) and Catalina Island (California) were not significantly differentiated, which was attributed to high gene flow. Populations on either side of the North Atlantic were genetically indistinguishable, which is most likely due to the recent establishment of the West Atlantic populations from European founders. At Friday Harbor, sympatric morphs varying in their spination and spine inducibility were genetically indistinguishable, supporting the hypothesis that M. villosa is an induced phenotype of M. membranacea and not a distinct species in the northeastern Pacific. Since such phenotypic plasticity is common in cheilostome bryozoans, the morphospecies concept must be used with caution. Received: 31 August 1998 / Accepted: 10 August 1999  相似文献   

14.
The distribution and genetic structure of many marine invertebrates in the North Atlantic have been influenced by the Pleistocene glaciation, which caused local extinctions followed by recolonization in warmer periods. Mitochondrial DNA markers are typically used to reconstruct species histories. Here, two mitochondrial markers [16S rDNA and cytochrome c oxidase I (COI)] were used to study the evolution of the widely distributed hydrozoan Obelia geniculata (Linnaeus, 1758) from the North Atlantic and the Pacific and, more specifically, in the context of North Atlantic phylogeography. Samples were collected from six geographic localities between 1998 and 2002. Hydroids from the North Atlantic, North Pacific (Japan), and South Pacific (New Zealand) are reciprocally monophyletic and may represent cryptic species. Using portions of the 16S rDNA and COI genes and the date of the last trans-Arctic interchange (3.1–4.1 million years ago), the first calibrated rate of nucleotide substitutions in hydrozoans is presented. Whereas extremely low substitution rates have been reported in other cnidarians, mainly based on anthozoans, substitution rates in O. geniculata are comparable to other invertebrates. Despite a life history that ostensibly permits substantial dispersal, there is apparently considerable genetic differentiation in O. geniculata. Divergence estimates and the presence of unique haplotypes provide evidence for glacial refugia in Iceland and New Brunswick, Canada. A population in Massachusetts, USA, appears to represent a relatively recent colonization event.Communicated by J.P. Grassle, New Brunswick  相似文献   

15.
The age and shell growth rate of deep-sea hydrothermal bivalves were investigated for the first time using in situ chemical staining combined with high-resolution micro-increment analysis. A staining chamber developed for this purpose was applied to a patch of Bathymodiolus thermophilus mussels at 2,500 m depth at the 9°47′N vent field on the East Pacific Rise (EPR) in May 2010. This approach minimizes disturbance of the mussels in their habitat. Bathymodiolus thermophilus grows according to a circalunidian rhythm, with one increment formed each day, and displays tide-related growth rate variability. Based on the von Bertalanffy growth rate model, the largest shell collected (SL = 20.5 cm) would be 10.0 year old, with a growth rate of 4.2–1.1 cm year?1 as the shell ages. This fast growth rate is consistent with the instability of the environment in this section of the EPR and observed recolonization rates and could reflect a specific adaptation of this species.  相似文献   

16.
Until recently, the only major hydrothermal vent biogeographic province not known to include bathymodioline mussels was the spreading centers of the northeast Pacific, but deep-sea dives using DSV Alvin on the Endeavor segment of the Juan de Fuca Ridge (47°56N 129°06W; ∼2,200 m depth) in August 1999 yielded the only recorded bathymodioline mytilids from these northeastern Pacific vents. One specimen in good condition was evaluated for its relatedness to other deep-sea bathymodioline mussels and for the occurrence of chemoautotrophic and/or methanotrophic symbionts in the gills. Phylogenetic analyses of the host cytochrome oxidase I gene show this mussel shares evolutionary alliances with hydrothermal vent and cold seep mussels from the genus Bathymodiolus, and is distinct from other known species of deep-sea bathymodiolines, suggesting this mussel is a newly discovered species. Ultrastructural analyses of gill tissue revealed the presence of coccoid bacteria that lacked the intracellular membranes observed in methanotrophic symbionts. The bacteria may be extracellular but poor condition of the fixed tissue complicated conclusions regarding symbiont location. A single gamma-proteobacterial 16S rRNA sequence was amplified from gill tissue and directly sequenced from gill tissue. This sequence clusters with other mussel chemoautotrophic symbiont 16S rRNA sequences, which suggests a chemoautotrophic, rather than methanotrophic, symbiosis in this mussel. Stable carbon (δ13C = −26.6%) and nitrogen (δ15N = +5.19%) isotope ratios were also consistent with those reported for other chemoautotroph-mussel symbioses. Despite the apparent rarity of these mussels at the Juan de Fuca vent sites, this finding extends the range of the bathymodioline mussels to all hydrothermal vent biogeographic provinces studied to date.  相似文献   

17.
Current taxonomy indicates a single global species of the Great Barracuda (Sphyraena barracuda) despite differences in color and behavior between Atlantic and Pacific forms. To investigate these differences and qualify the dispersal characteristics of this unique coastal–pelagic teleost (bony fish), we conducted a global phylogeographic survey of 246 specimens from thirteen sampling locations using a 629-base pair fragment of mtDNA cytochrome b. Data indicate high overall gene flow in the Indo-Pacific over large distances (>16,500 km) bridging several biogeographic barriers. The West Atlantic population contains an mtDNA lineage that is divergent from the Indo-Pacific (d = 1.9%), while the East Atlantic (N = 23) has two mutations (d = 0.6%) apart from the Indo-Pacific. While we cannot rule out distinct evolutionary partitions among ocean basins based on behavior, coloration, and near-monophyly between Atlantic and Indo-Pacific subpopulations, more investigation is required before taxonomic status is revised. Overall, the pattern of high global dispersal and connectivity in S. barracuda more closely resembles those reported for large oceanic predators than reef-associated teleosts.  相似文献   

18.
Dispersal in coral reef fishes occurs predominantly during the larval planktonic stage of their life cycle. With relatively brief larval stages, damselfishes (Pomacentridae) are likely to exhibit limited dispersal. This study evaluates gene flow at three spatial scales in one species of coral reef damselfish, Dascyllus trimaculatus. Samples were collected at seven locations at Moorea, Society Islands, French Polynesia. Phylogenetic relationships and gene flow based on mitochondrial control region DNA sequences between these locations were evaluated (first spatial scale). Although spatial structure was not found, molecular markers showed clear temporal structure, which may be because pulses of settling larvae have distinct genetic composition. Moorea samples were then compared with individuals from a distant island (750 km), Rangiroa, Tuamotu Archipelago, French Polynesia (second spatial scale). Post-recruitment events (selection) and gene flow were probably responsible for the lack of structure observed between populations from Moorea and Rangiroa. Finally, samples from six Indo-West Pacific locations, Zanzibar, Indonesia, Japan, Christmas Island, Hawaii, and French Polynesia were compared (third spatial scale). Strong population structure was observed between Indo-West Pacific populations. Received: 26 May 2000 / Accepted: 10 October 2000  相似文献   

19.
Surveys of genetic variation within cosmopolitan marine species often uncover deep divergences, indicating historical separation and potentially cryptic speciation. Based on broad geographic (coastal eastern North America, Gulf of Mexico, western Africa, Australia, and Hawaii) and temporal sampling (1991–2003), mitochondrial (control region [CR] and cytochrome oxidase I [COI]) and nuclear gene (lactate dehydrogenase A intron 6 [LDHA6]) variation among 76 individuals was used to test for cryptic speciation in the scalloped hammerhead, Sphyrna lewini (Griffith and Smith). CR and COI gene trees confirmed previous evidence of divergence between Atlantic and Indo-Pacific scalloped hammerhead populations; populations were reciprocally monophyletic. However, the between-basin divergence recorded in the mtDNA genome was not reflected in nuclear gene phylogenies; alleles for LDHA6 were shared between ocean basins, and Atlantic and Indo-Pacific populations were not reciprocally monophyletic. Unexpectedly, CR, COI, and LDHA6 gene trees recovered a deep phylogenetic partition within the Atlantic samples. For mtDNA haplotypes, which segregated by basin, average genetic distances were higher among Atlantic haplotypes (CR: D HKY=0.036, COI: D GTR=0.016) than among Indo-Pacific haplotypes (CR: D HKY=0.010, COI: D GTR=0.006) and approximated divergences between basins for CR (D HKY=0.036 within Atlantic; D HKY=0.042 between basins). Vertebral counts for eight specimens representing divergent lineages from the western north Atlantic were consistent with the genetic data. Coexistence of discrete lineages in the Atlantic, complete disequilibrium between nuclear and mitochondrial alleles within lineages and concordant partitions in genetic and morphological characters indicates reproductive isolation and thus the occurrence of a cryptic species of scalloped hammerhead in the western north Atlantic. Effective management of large coastal shark species should incorporate this important discovery and the inference from sampling that the cryptic scalloped hammerhead is less abundant than S. lewini, making it potentially more susceptible to fishery pressure.  相似文献   

20.
Oceanic islands represent excellent systems for studying the link between geographic isolation and population divergence. Easter Island is the world’s most isolated island and exhibits a high level of endemicity in the nearshore marine environment. Yet few studies have examined the effect of such extreme isolation on the divergence of populations of widespread species that occur at Easter Island. Conus miliaris, a marine gastropod distributed throughout much of the Indo-West Pacific, occurs at Easter Island where the population is ecologically and morphologically distinct from other populations of the species. To determine whether these phenotypic differences are associated with genetic isolation of the Easter Island population, we investigated the phylogeography of this species by examining mitochondrial COI sequences obtained from 141 individuals from eight localities occurring predominantly in the western, central and southeastern Pacific. Results from our analyses show that C. miliaris at Easter Island differs genetically from other populations. We estimate that C. miliaris colonized Easter Island shortly after the origin of the island ≤0.7 million years ago and that since population founding, gene flow has occurred predominantly from Easter Island to the west and that little migration has occurred into Easter Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号