首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用30%N902从除杂后的电镀污泥氨浸液中回收金属镍。在萃取原料液pH=9,相比(A/O)=2∶1,反应时间为5min条件下可使镍的萃取率达到99%。负载有机相经水洗后,用2mol/L A/O=1∶1的硫酸进行反萃,反萃时间为30min,反萃级数为8级,得到产品硫酸镍。硫酸镍溶液中镍离子含量90g/L,其它杂质达到产品质量要求。  相似文献   

2.
钛白废酸回收技术研究   总被引:1,自引:0,他引:1  
通过臭氧氧化技术将钛白废酸中的Fe^2+氧化成F^3+,再用萃取法除去Fe^3+。考察了络合剂(盐酸)浓度、萃取剂、萃取相比和多级错流萃取级数等对Fe^3+萃取率的影响,初步探索了反萃法回收萃取剂及萃取剂的循环利用。结果表明,当盐酸浓度为3.4-4.0mol/L时,几乎可完全络合溶液中的Fe^3+,Fe^3+的萃取率随相比(O/W)的增加而增大,萃取级数愈多萃取效果愈好。O/W=1:1的单级萃取与总相比O/W=0.5:1的四级错流萃取率接近。当反萃相比(V/O)=1.5:1时,Fe^3+的反革率达97%,萃取剂经过6次萃取一反萃循环后.Fe^3+的萃取率没有明显下降。去除Fe增的钛白废酸,经蒸馏浓缩到70%左右,再与浓硫酸混合后可用于钛白粉的生产,蒸馏过程中得到的盐酸循环使用,反萃出来的Fe^3+可作为生产铁红的原料。  相似文献   

3.
采用二丁基卡比醇(DBC)从印刷电路板废料中萃取金。考察了萃取剂浓度、氯离子浓度、氢离子浓度、反萃取剂浓度对反应的影响。实验结果表明:DBC萃取剂在盐酸介质中萃取浸取液中[Au3+]=0.307mg/L的最佳萃取条件为:[H+]=2.00mol/L,[Cl-]=1.00mol/l,O/A=1∶1,萃取时间=90s,DBC=50%(体积比)。在此条件下一级萃取率可达97.33%。选用亚硫酸钠作为反萃剂。通过实验总结出用该反萃剂从负载[Au3+]=0.272mg/L的DBC萃取剂中反萃金的最佳反萃条件为:亚硫酸钠浓度=5%,反萃时间=90s,O/A=5∶2。在此条件下,一级反萃率为95.04%。  相似文献   

4.
考察了相比、水相pH、混合时间等因素对LIX84I萃取铜的影响,结果表明:这些因素对铜的萃取率都有一定的影响,最优化的条件是有机相为30%LIX84I+70%煤油、室温、相比=2:1、出口水相pH值=2.0、搅拌速度=910r/min、萃取级数为3级,每级的时间为3min。对铜进行三级萃取和一级反萃,可以得到符合电积要求的硫酸铜溶液,萃取率和反萃取率分别可以达到94.6%和97.8%。  相似文献   

5.
利用国产新型铜萃取剂DZ988,以PEG-NO2/H2SO4混酸溶液氧化浸取废弃电子元器件得到的酸浸液为萃取原液(含铜浓度CCu=3.132 g/L),进行铜的萃取研究,考察各因素对铜的萃取及反萃取的影响。试验结果表明,铜的萃取率随萃取剂浓度、O/A比、萃取温度及pH的提高而提高;在萃取剂浓度设定为25%,萃取料液浓度用氨水调至pH=2,油水比O/A=1:1,常温的条件下,对废弃电子元器件的PEG-NO2/H2SO4混酸浸出液中的铜的萃取率可达99.45%,铜、铁分离系数达1 151;以硫酸作反萃剂,对负载铜的萃取剂进行反萃取研究,在硫酸溶液浓度为250 g/L,相比O/A=1:1时,铜的反萃率接近100%。同时,DZ988基本不萃取Co、Ni,后续可从铜萃余液中继续回收Co、Ni。  相似文献   

6.
实验确定了采用有机胺萃处理碱渣中和酸性水时,达到传质平衡时的萃取、反萃混合槽单位体积能耗,以及无相夹带时萃取、反萃澄清槽停留时间。原水CODcr11993~28000mg/L,CODcr去除率85%~90%。  相似文献   

7.
X7印.52(X) 103411镍福电池废锅极板制备碳酸锅的研究/王卫红…(深圳市工业废物处理站)//环境工程/冶金部建筑研究总院一2(X)1,19(2)一33一35 环图X一26 针对镍锅电池生产过程中产生的废泡沫式锅极板,提出了一条“溶解一萃取一沉淀”法生产碳酸锅的工艺路线。活性材料溶解条件:玩50劝浓度3mo护L,用量HZSO4/(ed+Ni)=1.乃(摩尔比);萃取cd条件:料液州二2.0,肠浓度ZmoFL,皂化率50%,相比(O/A)二3:1,三级逆流萃取;反萃Cd条件:反萃取剂珑s仇浓度ZmoFL,相比(O/A)二2:1,二级逆流反萃;沉淀Cd条件:NacO3浓度20%,用量N处CO3/(C子干+o.SH干)=…  相似文献   

8.
萃取-反萃法综合回收磷矿浮选尾矿中磷和镁   总被引:2,自引:0,他引:2  
针对某磷矿浮选尾矿的资源特点,将其作为高镁低品位磷矿进行处理,用萃取-反萃法分离酸浸液中的镁和磷。选择正丁醇作为萃取剂,在磷酸浓度为30%、萃取相比为1:1,温度为常温,萃取时间为5min的均衡搅拌条件下,五氧化二磷萃取率可达68%以上;用水作为反萃剂,在其加入量为反萃前有机相体积的30%,反萃时间为3min,常温条件下进行反萃,反萃率可达90%以上。该研究为综合回收磷矿浮选尾矿提供了基础性资料,  相似文献   

9.
研究了4-溴-2-氟碘苯萃余废水中碘的回收方法。25℃下,测定了苯、环己烷等7种萃取剂对碘萃取的分配常数及环己烷对碘萃取的分配曲线。研究选用了萃取率与分配常数相对较高,毒性相对较低的环己烷为萃取剂,并探讨了萃取剂、反应时间、溶液pH值、温度、反萃剂等因素对碘单质去除率的影响。结果表明在室温20℃,不调节废水pH值,相比为1:5、萃取时间10 min的条件下,碘的萃取率可达到88%。在室温20℃,相比为4:5的条件下,采用0.1 mol/L的氢氧化钾为反萃剂,碘的单级反萃率可达到90%。  相似文献   

10.
陈海平  周立祥  王世梅  梁剑茹 《环境科学》2009,30(11):3364-3370
城市污泥通常含有大量有机质但也存在数量不等有害金属,在不影响污泥有益成分的基础上,去除和回收污泥中金属,既使污泥无害化又产生经济效益,意义重大.针对苏州某工业园区污泥重金属含量较高,研究利用生物沥浸-溶剂萃取-电积技术回收城市污泥中重金属Cu的工艺,并探讨了采用5-壬基水杨醛肟萃取剂M5640从城市污泥生物沥浸液中萃取分离Cu和Fe的最佳工艺参数.结果表明,经过生物沥浸处理72 h后,城市污泥中重金属Cu溶出率高达90%.当最佳工艺条件为:萃取剂体积分数为2%,相比(有机相与水相体积比,以O/A表示)为1/3,沥浸液pH为2.0时,沥浸液中Cu的一级萃取率达到95%以上,而Fe的共萃率低于10%;反萃取试验结果表明,在反萃取相比为2/1的条件下用1.5 mol/L硫酸溶液进行反萃取,Cu的一级反萃取率达到80.07%;反萃取后的富集Cu溶液作为电解液,在槽电压为2.1 V、电解温度为55℃条件下电积6 h,Cu回收率达到90%以上.在整个工艺中萃余液和反萃液均可循环利用无废液排放,对含Cu高的污泥,利用生物沥浸-溶剂萃取-电积技术回收有良好的应用前景.  相似文献   

11.
采用酸碱法溶出电脑线路板中的贱金属,用王水制备金贵液,然后选用萃取容量较大的甲基异丁基甲酮进行萃金研究,结果表明:在相比为0.6、振荡萃取频率(100 r/min)、萃取时间15 min、温度40℃时,MIBK萃金的效果最佳,一次萃取率可达到97.14%,当金贵液中金含量大于30μg时,在以上条件下,萃取率可达到98%以上;选用5%的草酸进行金的反萃取,在70℃反萃40 min其反萃率可达98%以上;在120℃条件下蒸馏、冷凝回收有机相中的甲基异丁基甲酮,其回收率大于98%,节约萃取成本的同时,可提高试剂的利用效率。  相似文献   

12.
以国际腐殖质协会(IHSS)推荐的胡敏酸提取方法为基础,以去有机质土壤中添加胡敏酸所配制的土壤为研究对象,引入超声作为胡敏酸提取的辅助条件,采用批次试验优化了土壤中胡敏酸的提取方法。结果表明,基于胡敏酸提取回收率和精密度,在室温下获得的优化提取方法为:液土比为8:1、提取次数为3次、Na OH溶液浓度为0.05 mol/L、超声功率为120 W、超声时间为30 min;在此优化条件下,胡敏酸的回收率为94.73%±1.50%,显著大于IHSS推荐方法的回收率64.76%±0.28%,变异系数CV为1.59%、小于10%。相对于IHSS提取法,此优化提取法具有胡敏酸提取回收率高、资源节约、胡敏酸变性小、提取时间短等优点。  相似文献   

13.
采用Fenton/UV处理金属切削液废水的试验研究   总被引:2,自引:1,他引:1  
采用Fenton/UV高级氧化方法处理金属加工行业产生的切削液废水,并通过正交试验得出最佳工作条件:pH值=2.5,p(Fe^2+)=400mg/L,H2O2[V(H2O2=30%]的投加量为24mL/L,每次投加V(H2O2)为4mL/L,投加时间间隔为45min,投加次数为6次,UV总作用时间=5h,同时在最佳工况下进行了5L废水的放大试验。小试及放大实验均证明:在此工作条件下,原水ρ(CODCr)由2100mg/L降至110mg/L左右,CODcr去除率达到95%,且出水其它各项指标均达到国家GB8978~1996《污水综合排放标准》二级排放标准。此数据具有工程应用的参考价值。  相似文献   

14.
不同淋洗剂对镍污染砂土的柱淋洗研究   总被引:1,自引:0,他引:1  
比较了去离子水、阴离子表面活性剂十二烷基硫酸钠(SDS)、盐酸和柠檬酸对模拟污染砂土中镍(Ⅱ)的柱淋洗作用。SDS浓度为500、1000、1750、2500和3250mg/L,盐酸溶液pH值为0.8、1、2和3,柠檬酸溶液浓度为0.01、0.04、0.1和0.4mol/L。结果表明,几种淋洗剂对土柱中镍的淋洗曲线规律相似,即在淋洗液孔隙体积数为0.5时开始有镍淋出,随着累计孔体积数目的增大,淋洗液中镍的浓度逐渐开始增大,迭到峰值时又开始减小。在去离子水淋洗过程中,镍最大淋出浓度为90.8mg/L;五种不同浓度SDS淋洗过程中,镍最大淋出浓度分别为92.4、90.2、94.1、51.0和53.7mg/L;四种不同pH值的盐酸溶液对应的镍最大淋出浓度分别为959.5、753.3、56.3和23.9mg/L;四种不同浓度的柠檬酸对应的镍最大淋出浓度分别为318.6、793.4、930.1和1464.4mg/L。pH=1的盐酸溶液对镍的淋洗去除率最高为87.3%,其次是浓度为0.1mol/L的柠檬酸溶液,去除率为83.2%;SDS的淋洗效率低,与去离子水相当。0.1mol/L的柠檬酸溶液可为污染土壤重金属镍淋洗用试剂。  相似文献   

15.
目的获得经济且环境友好型化学溶解高温耐磨粘结铜的工艺。方法采用正交实验获得化学溶解除铜的最佳工艺参数,利用电化学手段测试铜及炮管基体在两种溶液体系最优配方中的E-t曲线和极化曲线,通过连续失重法分析铜在腐蚀溶液中的腐蚀溶解规律,并观察溶解后的表面形貌。结果化学溶解除铜工艺最优配方分别为过氧化氢-柠檬酸(H2O2(质量分数为0.8%)+C6H8O7(质量浓度为6 g/L)+温度θ为30℃+pH值为10)、溴酸钾-柠檬酸(KBrO3(质量浓度为30 g/L)+C6H8O7(质量浓度为30 g/L)+温度为30℃+pH值为10)。腐蚀溶解初始阶段,铜基体表面氧化膜逐渐溶解破坏,腐蚀电位变负,溶解速率加快,随后铜基体裸露,进入稳定溶解过程,反应速率逐渐趋于稳定。在溴酸钾-柠檬酸体系中铜的自腐蚀电流密度比过氧化氢-柠檬酸体系中高2个数量极,表现出更强的阳极活化能力和腐蚀溶解速度。结论铜在两种溶液体系中表现出快速稳定的溶解速度,炮管基体的腐蚀速率比铜小2~3个数量级,具有良好的耐蚀能力。  相似文献   

16.
文章研究了用Fe(NO3)3NaOH改性的活性炭联合过氧化氢对水溶液中氨苄青霉素钠的处理效果.确定了它们的优化处理条件,并对两者的处理效果作了相应比较。在T=30℃,pH:3.0,青霉素初始浓度为200mg/L条件下,投加5.0g/LFe(N03)3改性活性炭和80mg/LH202,反应120min后,COD、TOC去除率分别可以达到88.5%和77.9%;在T=30℃,pH=70,青霉素200mg/L条件下,投加8.0g/LNaOH改性活性炭和80mg/LH202,反应120rain后,COD、TOC去除率分别可以达到85.2%和76.4%。  相似文献   

17.
非均相催化臭氧化技术能够快速、有效地去除污水中较高浓度难降解有机污染物,比较适用于处理突发环境污染事故。通过对O3/Mn-Fe(3∶1)/载体硅胶在不同试验条件下处理高浓度硝基苯废水进行了动态试验研究,并考察了连续处理实际有机废水效果。试验结果表明:硝基苯废水为2 L、进水流速为0.2 m/s、催化剂投加量为20 mg/l、引发剂H2O2投加量为20 ml时,连续运行1小时后,硝基苯的去除率达到75.4%;反应器连续运行30天,出水中的硝基苯去除率稳定在65%左右。  相似文献   

18.
高浓度氨氮有机废水的吹脱试验研究   总被引:1,自引:0,他引:1  
某化工厂在生产有机酸的过程中产生了一部分高浓度氨氮的有机废水(NH3-N约30000mg/L,SO4^2-约80000mg/L,CODcr约20000mg/L),试验采用投加石灰、通入空气进行吹脱的预处理方法。试验结果表明,控制吹脱温度30℃-40℃、pH值11-12、吹脱时间3~4h时,氨氮的吹脱效率〉99%,氨的吸收率〉87%。  相似文献   

19.
采用铁炭微电解法+A/O工艺对染料废水进行处理,对影响铁炭微电解处理效率的各种因素及MO工艺的条件进行了研究。结果表明:铁炭微电解法预处理染料废水的最佳初始pH值为3,最佳混凝pH值为7.5,最佳铁炭比为1:1.1,适宜的反应时间为30min,BODs/COD比值由0.19提高到0.37;生物反应池内pH值为6.5~7,水温35-40℃,厌氧段水力停留时间8h,好氧段水力停留时间20h。整套工艺对COD和色度的去除率分别可达到90%和95%,出水水质达到了国家《污水综合排放标准》(GB8978—1996)一级。  相似文献   

20.
采用己内酰胺-四丁基溴化铵为原料,按摩尔配比为2∶1配制成[CPL][TBAB]类离子液体,制备的离子液体与乙醇溶液按体积比为1.5∶1混合以降低其粘度,利用筛板塔进行吸收实验,考察最佳吸收条件及最大吸收效率。结果表明,在实验条件下,最大的吸收效率条件为:离子液体的流量为60 L/h,SO2的流量为0.2 L/min,SO2为30℃,最大吸收效率为47.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号