首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定量化高寒草甸水分利用效率与气候因子的关系有利于预测未来气候变化对高寒草甸生态系统水分利用能力的影响。基于相关分析和多重逐步回归分析,研究了2010—2014年藏北高原3个海拔高度(4 300、4500、4 700 m)上的高寒草甸的水分利用效率与土壤温度、空气温度、土壤湿度、空气相对湿度、饱和水汽压亏缺的相互关系。结果表明,水分利用效率随着海拔的升高而增加,水分利用效率存在着显著的年际变异。相关分析表明,水分利用效率与土壤温度、空气温度、饱和水汽压亏缺存在正相关关系,与空气相对湿度存在负相关关系。多重逐步回归分析表明,土壤温度、土壤湿度和空气相对湿度共同解释了海拔4 300 m处的水分利用效率的季节变异,其中土壤温度的贡献最大;空气温度和土壤温度则分别解释了海拔4 500 m和4 700 m处的水分利用效率的季节变异。因此,环境温度主导着藏北高原高寒草甸的水分利用效率的季节变化,且暖干化的气候变化可能会提高藏北高原高寒草甸生态系统对水分的利用能力。  相似文献   

2.
植物地下生物量是高寒生态系统重要的碳库,可以反映植物对极端环境的适应特征。以高寒草原、高寒草甸草原和高寒草甸3种主要草地类型为对象,对比分析了非生长季和生长季的地下生物量,探究不同类型的高寒草地地下生物量分配机制及其动态变化过程。结果表明:(1)3种草地地下生物量的空间分布在生长季和非生长季均呈现"T"字型分布。在这两个时期,3种草地0~10 cm的生物量占总地下生物量的比例均表现为:高寒草原(91.20%,94.72%)高寒草甸草原(83.17%,92.07%)高寒草甸(67.04%,68.38%),且其比例在生长季均有增加;(2)两个时期高寒草甸地下生物量均最高(1 620.39±71.09)g·m~(-2),(3 950.08±291.46)g·m~(-2),非生长季高寒草原最低(136.24±9.14)g·m~(-2),生长季高寒草甸草原最低(133.97±6.93)g·m~(-2);高寒草甸和高寒草原地下生物量在生长季都有显著增加,而高寒草甸草原显著减少;(3)地下生物量与土壤含水量有显著的正相关关系,在同样的温度条件下,土壤含水量是地下生物量的重要影响因子;而生长季是藏北地区降水比较集中的时期,土壤表层水分的增加促使根系向表层生长。  相似文献   

3.
黄河源区植被生长季NDVI时空特征及其对气候变化的响应   总被引:2,自引:0,他引:2  
徐浩杰  杨太保  曾彪 《生态环境》2012,(7):1205-1210
利用黄河源区MODIS/NDVI数据、1∶100万植被类型图和气象资料,分析了该区不同植被类型生长季NDVI时空特征以及与气候因子的关系。结果表明,1)2000—2011年,黄河源区植被生长呈改善趋势,生长季NDVI年际变化率每10 a为+2.75%,高寒草原、高寒草甸、高寒灌丛生长季NDVI年际变化率分别为每10 a+2.84%、+2.65%、+2.77%。2)黄河源区植被改善面积占全区总面积的29.39%,主要分布在卡日曲和玛曲上游、扎曲流域、布青山南麓、扎陵湖北部和鄂陵湖周边地区。植被退化面积仅占全区总面积的0.98%,主要分布在约古宗列曲东南部山地和卡日曲北部山地。受水热条件控制,植被改善表现为:①植被改善面积南坡大于北坡;②植被改善面积随海拔升高先增加后减小;③植被改善面积随坡度增加迅速减小。3)黄河源区植被生长季NDVI与同期气温和降水分别存在显著正相关性,其中高寒草原和高寒草甸生长受降水影响更为明显,而高寒灌丛生长受气温影响更为明显。气候的暖湿化趋势可能是促使黄河源区植被生长改善的主要原因。  相似文献   

4.
海北高寒草甸返青期土壤温度与水分动态变化   总被引:1,自引:0,他引:1  
分析青藏高原高寒草甸返青期土壤水分和温度的变化以及相互关系是理解高寒草甸生态系统变化的重要基础。为明晰青藏高原祁连山东部高寒草甸返青期的土壤温度与水分变化规律,选择祁连山东部海北高寒草甸为试验区,以实地测试与方差、相关及回归分析相结合的方法研究了海北高寒草甸返青期土壤分层水分和温度的动态变化。结果表明:(1)观测期内,高寒草甸整个返青期表层0 cm及地表以下5、15、30、60和120 cm土壤各层平均温度分别为10.47、4.11、3.28、1.76、0.80和0.51℃,表层0 cm地温受气温变化影响最为显著;返青早期各层土壤温度均稳定于0℃左右,返青中期各层土壤温度迅速增加,返青中后期自上而下不同土壤层温度逐渐降低;(2)表层、中层和深层土壤平均含水量分别为17.3%、20.6%和20.9%,中层和深层土壤水分含量较小;表层土壤含水量波动剧烈,在整个返青期呈逐渐下降趋势,中层和深层土壤含水量连续增加,波动范围小;(3)高寒草甸土层0~15 cm的土壤体积含水量与土壤温度呈显著负相关,随土壤平均温度增加,土壤体积含水量逐渐降低;15~30、30~45和45~60 cm较深层土壤含水量与土壤平均温度呈显著正相关,随土壤深度增加其相关性也随之增强。该研究可为理解青藏高原高寒草甸生态系统的变化规律和变化过程提供参考依据,对高寒草甸的保护及可持续利用也具有重要意义。  相似文献   

5.
高寒草甸是青藏高原重要的草地类型之一。目前增温对高寒草甸温室气体通量影响的研究较少,尤其在不同尺度的增温条件下,温室气体通量的响应尚不明确。因此,设置多梯度增温实验,模拟未来不同幅度增幅情况,对预测高寒草甸温室气体通量的变化具有重要意义。为深入地认识气候变暖对高寒草甸温室气体通量的影响,假设高寒草甸温室气体通量的周转速率在增温条件下随增温梯度而加快。在青藏高原纳木错地区高寒草甸,采用开顶箱法(Open-top chambers,OTCs)设置对照(T0,不增温)以及4个不同程度的增温处理(T1、T2、T3、T4,分别增温1、2、3、4℃),结合静态箱-气相色谱法对增温处理后的CO_2、CH_4和N_2O通量进行同步观测。对3个生长季(2013—2015年)进行连续观测发现:(1)地下5 cm土壤3年的平均温度相对于对照处理分别增加1.73℃(T1)、1.83℃(T2)、3.03℃(T3)和3.53℃(T4);(2)高寒草甸生长季平均呼吸(CO_2)为(42.6±9.11)mg·m~(-2)·h~(-1),同时具有较强的CH_4吸收能力,达到(-47.96±8.76)μg·m~(-2)·h~(-1),其N_2O通量维持在较低水平,为(0.3±0.46)μg·m~(-2)·h~(-1);(3)在高寒草甸生长季,温室气体通量与温度以及水分均具有显著的相关关系,但增温未能显著改变生长季温室气体平均通量。以上结果表明,增温所引起的其他环境因素的改变(如伴随不同梯度增温下土壤水分变化的不确定性),导致高寒草甸在短期内进行内部调节,并维持温室气体通量稳定。  相似文献   

6.
增温、刈割对高寒草甸地上植被生长的影响   总被引:2,自引:0,他引:2  
近些年由于气候变化和土地利用方式变化的双重影响,高寒草甸植被逐渐表现出退化现象。探讨高寒草甸植被生长特征在气候变化和人类活动中的动态变化规律,对高海拔地区植被的保护和合理利用,防止草地退化和沙漠化发生具有重要意义。以青藏高原高寒草甸为研究区,利用增温实验模拟气候变暖、刈割实验模拟人类放牧,采用随机区组设计,设置对照、增温、刈割、增温+刈割交互作用四种实验处理,于2012─2013年植被生长季调查高度、盖度和地上生物量,研究高寒草甸地上植被生长特征对增温、刈割的响应,以此探讨青藏高原高寒草甸地上植被在气候变化和人类活动中的变化趋势。结果表明:(1)夏季是高寒草甸植被生长的最佳季节,其中7月是其生长的最佳月份;高寒草甸地上植被生长特征年内生长季和年际间的变化趋势差异较大,表现为植被高度在生长季中期高于初期和末期(P0.05),植被盖度和地上生物量在生长季中期和末期高于初期(P0.05);2012年的植被高度和地上生物量略高于2013年(P0.05),但植被盖度略低于2013年(P0.05)。(2)植被高度、盖度和地上生物量在增温第2年(2012年)的各实验处理间均未出现显著差异(P0.05),而在第3年(2013年)开始出现显著差异(P0.05),其中2年刈割显著降低植被高度和地上生物量(P0.05),3年增温和2年刈割的交互作用显著降低植被盖度和地上生物量(P0.05)。以上结果表明,增温、刈割对高寒草甸地上植被生长的影响在短期和长期尺度上存有差异,初期并不显著,但随着时间推移,影响开始加强。  相似文献   

7.
根系碳(C)氮(N)磷(P)密度影响植物与土壤间碳氮磷养分的循环过程,从而影响生态系统的地球化学循环。以申扎县高寒草原、高寒草甸草原和高寒草甸3种草地为对象,探究非生长季(4月)和生长季(8月)3种高寒草地根系C、N、P密度的分布规律及其差异。结果表明,(1)3种草地根系C、N、P密度在两个时期均呈现"T"字型空间分布,即3种草地根系C、N、P密度均随着土壤深度的增加而降低,且整体上高寒草甸的养分密度显著高于其他两种草地。3种草地根系C、N、P密度范围分别为57.287—1 130.753、1.457—38.243、0.090—3.217 g·m~(-2)。(2)3种草地的C、N、P密度具有显著的季节差异。生长季,高寒草原总地下C、N密度显著高于非生长季,分别高出非生长季47.822%和60.910%,而总地下P密度无显著差异;而生长季高寒草甸草原总的和每层的地下C、N、P密度显著低于非生长季。高寒草甸总地下C、N、P密度表现为生长季高于非生长季。高寒草原和高寒草甸增加的养分密度集中在0—10 cm深度。高寒草甸、高寒草原及高寒草甸草原的物种组成不同,土壤养分含量差异及土壤水分状况的不同可能是导致3种草地根系养分密度差异的原因。本研究可以为高寒草地根系养分密度季节变化提供基础资料,进一步认识草地根系在养分循环中的作用提供理论支持。  相似文献   

8.
草地土壤CO_2排放是陆地生态系统碳循环的关键生态学过程之一,研究其通量特征可以定量评估和预测区域CO_2排放状况,服务于全球气候变化下的区域碳管理。应用LI-8150土壤碳通量测定系统,定位观测并分析科尔沁沙地沙质草地生长季(6—9月)土壤CO_2通量特征,探究水热因子(降水、土壤温度和土壤含水量)对碳排放的影响机制。结果表明,(1)在日动态变化尺度上,晴天和雨天土壤CO_2通量呈现不对称"单峰型"曲线,最高值出现在11:00—16:00,最低值在04:00—06:00。(2)在生长季动态变化尺度上,土壤CO_2日平均通量呈现明显的多峰和季节变化,土壤CO_2月平均日通量分别在7月和9月出现高峰值和低峰值;2016年6月1日—9月30日日平均排放通量最小值(0.35μmol·m~(-2)·s~(-1))出现在晴天(6月8日),最大值(2.68μmol·m~(-2)·s~(-1))出现在雨天(7月23日),生长季平均排放通量为1.26μmol·m~(-2)·s~(-1)。(3)土壤CO_2通量表现为雨天高于晴天,降水事件是扰动土壤CO_2排放的关键因子。(4)土壤CO_2通量与土壤温度和土壤含水量分别表现出不同的时间尺度效应。在日尺度上,无论晴天还是雨天,7月土壤CO_2月平均日通量与表层(5 cm)土壤温度和含水量均呈正相关关系,且相关系数高于其他月份;晴天和雨天土壤含水量和温度的协同作用分别可解释土壤CO_2排放的95.0%和85.5%。在生长季尺度上,晴天的土壤含水量和雨天的土壤温度分别能够解释土壤CO_2排放的63.6%和48.0%;当土壤含水量低于4.87%、土壤温度低于25.94℃时,土壤CO_2排放量随含水量、温度的增加而增加;晴天和雨天土壤含水量和温度的协同作用分别可解释土壤CO_2排放的61.6%和43.7%。  相似文献   

9.
藏北高原高寒草甸生态系统呼吸对增温的响应   总被引:1,自引:0,他引:1  
生态系统呼吸(ER)作为生态系统最大的碳通量途径之一,其微小的波动都会引起大气中二氧化碳浓度的显著变化。本研究利用开顶箱(OTCs)式装置在藏北高原高寒草甸生态系统设置不同增温梯度实验,模拟未来增温2℃(T1)和增温4℃(T2)情景,探究增温对生态系统呼吸(ER)的影响。研究结果表明:(1)在2015整个生长季及生长季前期,模拟未来增温2℃和4℃均显著降低了ER(2015年整个生长季T1减少了ER为34%,T2减少了ER为31%;生长季前期T1减少了ER为35%,T2减少了ER为36%),但在生长季后期,模拟未来实验增温2℃显著降低ER(T1减少了34%),而模拟未来实验增温4℃没有显著改变ER;(2)回归分析结果表明,在整个2015年生长季及生长季前期,土壤水分是决定生态系统呼吸(ER)的关键因素,而生长季后期ER主要受土壤温度影响,因此在半干旱的高寒草甸生态系统中,土壤水分和土壤温度二者共同调节生态系统呼吸(ER)。研究结果表明,在干旱的生长季,未来增温可能会抑制高寒草甸生态系统的碳排放。  相似文献   

10.
掌握三江源草地植被变化对草地恢复和生态建设工程具有重要的指导意义。以三江源草地生长季平均NDVI(GNDVI)为研究对象,基于趋势分析和偏相关分析方法,分析了三江源区2000—2015年高寒草地生长季GNDVI年际波动及其对海拔变化的敏感性,旨在阐明三江源高寒草地年际波动及其在不同水热组合环境下的响应规律。研究结果表明:自2000年以来,三江源地区暖湿化和各类生态工程的实施使得三江源区高寒草地GNDVI表现出上升的趋势,由于气候、植被生理生态过程等因素的影响,三江源区高寒草地GNDVI存在较大的年际波动,其中草甸区的年际波动对三江源全区草地GNDVI年际波动贡献度达75.4%,草原区仅有24.6%;三江源草地GNDVI多年均值随海拔的升高而降低,而GNDVI的变化趋势随海拔的升高而升高。低海拔地区的草地占比虽小,但其GNDVI的年际波动对三江源全区高寒草地年际波动的贡献度远大于高海拔地区;无论三江源全区、草甸区还是草原区,低海拔地区GNDVI的年际波动受降雨主导,而温度的变化是高海拔地区GNDVI年际波动的主导因子。  相似文献   

11.
土壤是甲烷(CH4)重要的源和汇.氮沉降和降水格局变化正在急剧改变土壤碳循环,进而可能对土壤CH4通量造成深刻影响.高寒生态系统是巨大的碳库,对氮沉降和降水变化十分敏感.然而,目前多数研究集中在短期实验上,缺乏对长期氮沉降和降水变化背景下CH4通量的响应及其调控因素的认识.以青藏高原高寒草原为研究对象,在2013年搭建模拟氮沉降和降水格局改变实验平台.基于静态箱–气相色谱法测定2020年生长季(5-10月)土壤CH4通量.结果显示,高寒草原土壤呈CH4的汇.氮添加没有显著改变生长季和植物生长高峰CH4通量.然而,降水变化显著改变了生长季和植物生长高峰CH4通量,其中降水增加(+50%降水)降低了CH4的吸收(分别为–16%和–45%),降水减少(–50%降水)增强了CH4的吸收(分别为+73%和+33%).进一步研究发现,与植物属性和功能基因丰度相比,土壤环境因子主导了CH4通量变化(解释率>90%).其中CH4通量与土壤含水量和温度显著正相关,与土壤pH显著负相关.综上所述,在未来全球变化情景下,降水格局改变更能调节青藏高原高寒草原CH4通量的变化.(图6表1参37)  相似文献   

12.
藏北高寒草甸是全球高寒草地的重要组成部分,是对气候变化最敏感的植被类型之一。关于高寒草地植被指数与环境温湿度因子的关系还存在着诸多不确定性,这限制了准确预测高寒草地植被生长对将来气候变化的响应。定量化高寒草地植被指数与气候因子的关系利于预测将来气候变化对高寒草地植被生长的影响。该研究基于相关分析和多重逐步回归分析探讨了藏北高原不同海拔高度(4300、4500和4700 m)的高寒草甸2011─2014年每年6─9月的归一化植被指数(normalized difference vegetation index,NDVI)、增强型植被指数(Enhanced Vegetation Index,EVI)与土壤温度、土壤湿度、空气温度、相对湿度、饱和水汽压差的相互关系。相关分析表明,3种海拔的NDVI(4 300 m:r=0.79,P=0.000;4 500 m:r=0.80,P=0.000;4 700 m:r=0.52,P=0.005)和EVI(4 300 m:r=0.61,P=0.001;4 500 m:r=0.66,P=0.000;4 700 m:r=0.53,P=0.004)都随着土壤湿度的增加显著增加;3种海拔的NDVI(4 300 m:r=-0.68,P=0.000;4 500 m:r=-0.56,P=0.002;4 700 m:r=-0.40,P=0.037)和EVI(4 300 m:r=-0.56,P=0.002;4 500 m:r=-0.49,P=0.008;4 700 m:r=-0.46,P=0.014)都随着饱和水汽压差的增加显著降低;植被指数与环境温湿度因子的相关系数随着海拔的变化而变化;NDVI和EVI与环境温湿度因子的相关系数存在差异。多重逐步回归分析表明,土壤湿度一个因子解释了3种海拔的归一化植被指数、海拔4 300和4 500 m的增强型植被指数的变异,而海拔4 700 m的土壤湿度和土壤温度共同了解释了增强型植被指数的变异,其中土壤湿度的贡献较大。因此,在藏北高寒草甸,植被指数对气候变化的敏感性可能随着海拔的变化而变化,NDVI和EVI对气候变化的敏感性可能不同,土壤湿度主导着NDVI和EVI的季节变化。  相似文献   

13.
土壤纤毛虫是土壤微型生物系统的重要组成部分,在生态系统的物质循环和能量流动中发挥着重要作用。研究青藏高原高寒草甸土壤纤毛虫群落的季节变化特征,有助于认识区域及全球变化对土壤动物群落结构及其多样性的影响,可为退化生态系统的恢复评价提供科学依据。于2015年4月、7月、9月和12月在甘南合作市附近的高寒草甸选取典型样地,采用"非淹没培养皿法"、"活体观察法"等测定土壤纤毛虫物种数和密度,同时测定了土壤含水量、土壤温度、光照度、pH值及土壤养分等相关环境因子。结果表明,春夏秋冬土壤环境因子变化有显著差异,4个季节分别检出纤毛虫97、141、105、78种,其中,旋毛纲(Spirotrichea)和裂口纲(Litostomatea)为优势类群。Shannon-Wiener指数、Simpson指数以及Pieluo指数均为春季相对较高,Margalef指数、物种数和丰度均为夏季最高,纤毛虫的垂直分布具有表聚性。土壤纤毛虫群落结构和环境因子的冗余分析表明,土壤温度、全磷含量、光照度和含水量等均影响了甘南高寒草甸土壤纤毛虫群落的分布,其中土壤温度是关键限制因子。该研究结果有助于深入理解和准确预测高寒草甸牧区的土壤纤毛虫在生态系统养分循环中生态功能的变化特征。  相似文献   

14.
放牧是高寒草甸一种重要的利用方式,对土壤理化性质和植被会产生重要影响,研究放牧对高寒草甸生态系统呼吸的影响对估算碳交换和制定合理放牧政策具有重要意义.利用静态箱-气象色谱法,于2012年8月到2013年7月在青藏高原东缘高寒草甸对轻度、中度和重度3种放牧强度下的生态系统呼吸进行每月至少一次的连续观测,以估算高寒草甸生态系统呼吸,并探讨放牧强度对生态系统呼吸的作用.结果显示:轻度、中度和重度放牧条件下,年均生态系统呼吸(以C计)分别为226.33±62.30、213.63±53.22和215.15±53.19 mg m~(-2) h~(-1),三者之间无显著差异(P0.05);在生长季生态系统呼吸分别为367.97±47.86、324.62±44.95和348.37±43.10 mg m~(-2) h~(-1),在非生长季生态系统呼吸分别为105.81±22.13、96.55±14.69和110.61±16.89 mg m~(-2) h~(-1),在不同放牧强度下生态系统呼吸均表现出明显的季节特征,但在相同季节不同放牧强度间生态系统呼吸差异不显著;月累积降水量与生态系统呼吸呈显著正相关关系;该区域放牧地生态系统平均年累积呼吸为472.63 g m~(-2) h~(-1).本研究表明,在试验初期不同放牧强度对生态系统呼吸无显著作用.  相似文献   

15.
三江源区具有重要的水源涵养功能,该区土壤水分的时空分布和变化对当地及周边地区的生态系统和气候调节有重要意义。为了解未来三江源草地土壤生态系统变化趋势,探究土壤温度和水分对模拟增温的响应规律,利用温湿度自动记录仪实时监测记录,分析了青海省玉树州称多县高寒草甸模拟增温条件下土壤温度和土壤水分的变化规律及冻融转换期土壤温度和水分的相关性。结果表明,(1)模拟增温条件下,0—5 cm和15—30 cm土层的土壤温度分别增加了2.50℃和1.36℃,对表层土壤(0—15 cm)的增温效果更加明显,且增温改变了不同土层解冻期和冻结期的长度。(2)0—15 cm和15—30 cm土层的土壤水分分别增加了0.07%和0.09%,15—30 cm土层的土壤水分的增幅大于0—15 cm土层,并且呈现出生长季变化波动大、非生长季变化波动小的规律。(3)在0—15 cm土层中,冻结期与解冻期,土壤温度和土壤水分均存在正相关关系(P0.01);在15—30 cm土层中,冻结期土壤含水量随着温度的增加呈现显著上升趋势。  相似文献   

16.
基于涡度相关系统对青海湖藏嵩草湿草甸湿地生态系统CO_2通量变化特征及其影响因子进行研究。结果表明,青海湖藏嵩草湿草甸湿地生态系统CO_2通量具有明显的日变化和月变化特征。生长季表现为CO_2的净吸收,其吸收峰值出现在12:30—15:00之间,最大值为0.42 mg·m~(-2)·s~(-1),排放峰值出现在20:00—22:30之间,最大值为0.24 mg·m~(-2)·s~(-1)。非生长季日变化较小,总体表现为CO_2的净排放,除了11月,其他月份白天CO_2排放通量都明显大于夜间。2015年青海湖高寒藏嵩草湿草甸湿地生态系统全年净生态系统CO_2交换量为54.55 g·m~(-2),表现为碳源。路径分析表明,土壤温度、光合有效辐射和饱和水汽压差是影响CO_2通量日交换大小的主要控制因子。  相似文献   

17.
以青海海北高寒草甸为研究对象,分析了禁牧(对照,CK)、轻度放牧(light grazing,LG)、中度放牧(moderate grazing,MG)、重度放牧(heavy grazing,HG)试验地土壤贮水量和利用水量平衡法计算的植被实际蒸散量动态变化,并对不同牧压梯度下高寒草甸的水分有效利用率进行了比较。结果表明,牧压梯度下土壤贮水量在生长季的变化特征基本一致,表现为5月、6月高,7月低,8月以后缓慢升高。5月8日到9月28日0~50 cm土层平均土壤贮水量为CKHGLGMG,分别为(222.82±7.07),(199.71±4.52),(189.00±4.37)和(187.69±3.93)mm,表明放牧使土壤贮水量减小,统计分析表明,禁牧与放牧地之间贮水量差异达极显著水平(P0.01)。不同牧压梯度上高寒草甸植被实际蒸散量在生长季的变化特征基本一致,表现出5月低,6月开始升高,7月蒸散量达最大,以后逐步下降;整个生长季CK、HG蒸散量较高,LG、MG蒸散量较低,分别为(389.37±3.39)、(355.74±5.54)、(350.17±8.6)3和(346.15±1.31)mm。从土壤水分亏缺来看,重牧不利于水源涵养,但禁牧亦影响水源涵养功能的提高,只有适度放牧有利于水源涵养。植被实际蒸散量与降水量呈极显著正相关关系。高寒草甸植被地上地下净初级生产力在生长季的水分有效利用率表现为LG、MG较高,HG较低,CK的水分有效利用率最低,分别为0.55%、0.56%、0.50%和0.37%,说明适度放牧能够提高植被水分有效利用率,而禁牧显著降低植被水分有效利用率。  相似文献   

18.
为了解高寒草甸不同种群利用资源和占据生态空间的能力,结合野外试验和室内分析等手段对青藏高原杂类草草甸、矮嵩草(Kobresia humilis)草甸、小嵩草(Kobresia pygmaea)草甸和藏嵩草(Kobresia tibetica)沼泽化草甸的群落数量特征及主要优势种植物的生态位进行研究.结果表明,不同群落类型高寒草甸物种组成、Shannon-Wiener和Simpson多样性指数均表现出杂类草草甸矮嵩草草甸小嵩草草甸藏嵩草沼泽化草甸;地上生物量为藏嵩草沼泽化草甸矮嵩草草甸杂类草草甸小嵩草草甸;不同群落类型优势种群所占的比例存在差异性.生态位宽度以及主要优势种植物生态位重叠值在不同植被类型差异明显,垂穗披碱草(Elymus nutans)在杂类草和矮嵩草草甸的生态位宽度最大,小嵩草和藏嵩草分别在小嵩草草甸和藏嵩草沼泽化草甸中最大,且生态位越大与其他植物的生态位重叠程度较高.但同一物种在不同群落类型所占的生态位宽度和生态位重叠值也不同,生态位宽度大的物种间生态位重叠值也越大.说明高寒草甸优势种群在资源利用能力或环境的生态适应能力方面有较大的差异性,环境资源的异质性是导致群落组成不同的关键因子.  相似文献   

19.
在全球气候变化背景下,开展植被变化对气象因子的响应研究对流域生态环境保护和水土资源合理利用具有重要的现实意义。以雅砻江流域为研究区,基于1982—2015年GIMMS NDVI数据,首先采用多种数理统计方法揭示生长季NDVI的时空变化特征,基于滞后相关系数法分析NDVI对气象因子的时滞效应,在此基础上建立各像元NDVI与气象因子的主成分回归方程,分析影响NDVI变化的主要气象因子及其贡献率,进而揭示NDVI对各气象因子的响应变化特征。结果表明:雅砻江流域NDVI在年内呈单峰型变化,峰值出现在8月,生长季NDVI年际变化呈不显著下降趋势。流域NDVI自下游向上游逐渐减小,植被退化面积占30%,改善面积占24.28%,中游植被改善和退化面积占比最大,就各植被类型变化而言,针叶林改善比重相对较大,灌丛和草甸退化较为严重。导致流域植被变化的主控气象因子为降水和气温,其对植被变化的贡献率分别为27.68%和26.31%,其中,流域上游及中游北部地区植被变化主要受气象因素影响,中游南部及下游地区植被受气象因子与其他因子(如人类活动)的共同影响。各像元NDVI变化的主控气象因子存在显著差异,降水、平均气温和相对湿度是中上游植被变化的主控气象因子,而降水和日照时数是下游植被变化的主控气象因子。流域植被对各气象因子的响应存在一定的时滞效应,植被对各气象因子滞后响应面积大小顺序为:平均风速>降水>日照时数>平均气温>相对湿度。中上游植被对主控气象因子降水、平均气温和相对湿度的响应主要为当月及滞后1个月;下游植被对主控气象因子降水的响应主要为滞后1个月和滞后3个月,而对主控气象因子日照时数的响应主要为当月。  相似文献   

20.
实验增温对西藏高原玉米田土壤呼吸的影响   总被引:1,自引:0,他引:1  
青藏高原农业区正经历着明显的气候变暖,但气候变暖如何影响高寒农业生态系统碳循环目前仍不明确。土壤呼吸是第二大陆地生态系统碳通量,高寒农业生态系统土壤呼吸对气候变暖的响应的不确定性限制了气候变化背景下人类对青藏高原高寒生态系统碳循环的预测能力。2015年4月在西藏玉米田采用开顶式生长箱进行模拟增温试验,旨在探究气候变暖对土壤呼吸及其温度敏感性的影响。在2015年玉米生长季节的5—8月份,利用Li8100土壤通量观测系统测定了6次土壤呼吸日变化(8:00—20:00),并利用HOBO微气候观测系统观测了5 cm深处的土壤温度和土壤湿度。结果表明,实验增温显著提高了5 cm深处的土壤温度(t=11.93,P=0.000),增幅为3.22℃,同时显著降低了5 cm深处的土壤含水量,降幅为0.04m~3·m~(-3)(t=4.87,P=0.008)。对照和模拟增温处理的土壤呼吸速率分别为6.79μmol·m~(-2)·s~(-1)和7.34μmol·m~(-2)·s~(-1),两者间无显著差异(F=1.65,P=0.235)。尽管如此,土壤呼吸仍存在着显著的日变化(F=137.66,P=0.000)和季节变异(F=54.48,P=0.000)。对照和模拟增温处理的土壤呼吸温度敏感性分别为1.70和1.77,两者间也无显著差异(t=2.69,P=0.100)。土壤温度解释了36%的对照处理的土壤呼吸变异,而土壤温度和土壤湿度共同解释了62%的土壤呼吸变异。因此,3.22℃的土壤增温没有显著改变土壤呼吸及其温度敏感性,这与3.22℃的土壤增温引起了土壤湿度的降低有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号