首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.  相似文献   

2.
Biogenic Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. A Mn-oxidizing bacterium Bacillus sp. WH4 was isolated from Fe–Mn nodules of an agrudalf in central China. The biogenic Mn oxides formed by mediation of this Mn oxidizing microorganism were identified as short-ranged and nano-sized Mn oxides. Cd adsorption isotherms, pH effect on adsorption and kinetics were investigated in comparison with an abiotic Mn oxide todorokite. Maximum adsorption of Cd to the biogenic Mn oxides and todorokite was 2.04 and 0.69 mmol g?1 sorbent, respectively. Thus, the biogenic Mn oxides were more effective Cd adsorbents than the abiotic Mn oxide in the aquatic environment. The findings could improve our knowledge of biogenic Mn oxides formation in the environment and their important roles in the biogeochemical cycles of heavy metals.  相似文献   

3.
In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment–water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m?2 day?1) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in the Mar Piccolo area. In particular, metals could be promptly remobilised as a consequence of oxygen depletion, posing a serious concern for the widespread fishing and mussel farming activities in the area.  相似文献   

4.
The concentration of nine metals was measured in liver, kidney, heart, muscle, plastron, and carapace of Aspideretes gangeticus from Rasul and Baloki barrages, Pakistan. The results indicated that metal concentration were significant different among tissues of Ganges soft-shell turtles. However, higher concentrations of Co (5.12 μg/g) and Ni (1.67 μg/g) in liver, Cd (0.41 μg/g) in heart, Fe (267.45 μg/g), Cd (2.12 μg/g) and Mn (2.47 μg/g) in kidney, Cd (0.23 μg/g), Cu (2.57 μg/g), Fe (370.25 μg/g), Mn (5.56 μg/g), and Pb (8.23 μg/g) in muscle of A. gangeticus were recorded at Baloki barrage than Rasul barrage. Whereas mean concentrations of Pb (3.33 μg/g) in liver, Co (1.63 μg/g), Cu (11.32 μg/g), Pb (4.8 μg/g) and Zn (144.69 μg/g) in heart, Co (4.12 μg/g) in muscle, Ni (1.31 μg/g), Pb (2.18 μg/g), and Zn (9.78 μg/g) in carapace were recorded higher at Rasul barrage than Baloki barrage. The metals followed the trend Fe > Zn > Ni > Cu > Mn > Pb > Cr > Co > Cd. Metals of toxicological concern such as Cr, Pb, and Cd were at that level which can cause harmful effects to turtles. The results provide baseline data of heavy metals on freshwater turtle species of Pakistan.  相似文献   

5.
An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar.  相似文献   

6.
浮游球衣菌对Pb2+、Cu2+、Zn2+、Cd2+的吸附性能研究   总被引:8,自引:0,他引:8  
研究了浮游球衣菌(Sphaerotilus natans)在不同吸附条件下对溶液中Pb^2+、Cu^2+、Zn^2+、Cd^2+的吸附规律。结果表明,Sphaerotilus natans对这4种重金属离子均有一定的吸附作用,并在20min内达到吸附平衡,pH对吸附过程影响较大,pH为5.5时Sphaerotilus natans对这4种金属离子的吸附效果最好,Sphaerotilus natans对它们的吸附选择性为Pb^2+〉Cu^2+〉Zn^2+〉Cd^2+,Pb^2+、Cu^2+能部分置换出已被菌体吸附的Zn^2+、Cd^2+。HCI和EDTA溶液可有效地将金属离子从菌体上解吸下来,解吸后的菌体可重复使用。  相似文献   

7.
Li Y  Yang F  Dong D  Lu Y  Guo S 《Chemosphere》2006,62(10):1709-1717
The speciation and extent of migration of adsorbed Pb and Cd in natural surface coatings (NSCs) were investigated using sequential extraction procedure to provide an understanding of distribution of the adsorbed Pb and Cd. Extractions were conducted on NSCs before and after Pb and Cd adsorption treatment under controlled laboratory conditions with initial Pb and Cd concentrations ranging from 0.2-2.5 mol/l. The Langmuir adsorption isotherms were applied to estimate equilibrium coefficients of Pb and Cd adsorption to NSCs components. The results showed that 58.50% of adsorbed Pb in average existed in tightly adsorbed form, and the remaining Pb was mostly present as solid oxides/hydroxides (34.00%) and exchangeable and soluble form (7.50%) in NSCs, respectively. Large amount of adsorbed Cd (70.51% in average) was present in exchangeable and soluble form, following a decreasing order in tightly adsorbed form (18.61%), solid oxides/hydroxides (9.87%), and easily oxidizable solids/compounds (1.01%), respectively. No Cd was found in strongly held oxides and precipitates. Compared to the distribution of adsorbed Pb in NSCs, Cd distribution showed that less migration of Cd from exchangeable and soluble form to solid oxides/hydroxides after adsorbed to NSCs, indicating fewer sites for Cd to adsorb to NSCs and less affinity of Cd to the NSCs. These percent distributions of metals provided an additional interpretation to that Pb adsorption to the NSCs greater than that of Cd, less retention of Cd than that of Pb and less roles attributed for Pb/Cd adsorption by organic materials in NSCs, which were observed based on the selective extraction techniques in the independent investigations.  相似文献   

8.
Abstract

Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe–Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0–22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P ? Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0–22 cm soil depths except for Cd in the 10–22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe–Mn oxides form in the 0–10 and 10–22 cm soil layers. Cadmium was predominantly in the Fe–Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0–10 cm soil layer.  相似文献   

9.
Dissolved organic matter (DOM), as the most active organic carbon in the soil, has a coherent affinity with heavy metals from inherent and exogenous sources. Although the important roles of DOM in the adsorption of heavy metals in soil have previously been demonstrated, the heterogeneity and variability of the chemical constitution of DOM impede the investigation of its effects on heavy metal adsorption onto soil under natural conditions. Fresh DOM (FDOM) and degraded DOM (DDOM) from sugarcane rind were prepared, and their chemical properties were measured by Fourier-transform infrared spectrometry (FTIR), excitation-emission matrix (EEM) fluorescence spectroscopes, nuclear magnetic resonance (NMR), and molecular weight distribution (MWD). They were also used in batch experiments to evaluate their effects on the adsorption of Cu(II) onto farmland red soil. Based on our results, the chemical structure and composition of DDOM greatly varied; compared with FDOM, the C/O ratio (from 24.0 to 9.6%) and fluorescence index (FI) (from 1.4 to 1.0) decreased, and high molecular weight (>10 kDa) compounds increased from 23.18 to 70.51%, while low molecular weight (<3 kDa) compounds decreased from 56.13 to 12.13%; aromaticity and humification degree were markedly enhanced. The discrepancy of FDOM and DDOM in terms of chemical properties greatly influenced Cu(II) adsorption onto red soil by affecting DOM-Cu(II) complex capacity. The FDOM inhibited the adsorption of Cu(II), while DDOM promoted adsorption, which was significantly influenced by soil pH. Maximum adsorption capacity (Q m) was 0.92 and 5.76 mg g?1 in the presence of FDOM and DDOM, respectively. The adsorption process with DDOM could be better described by the Langmuir model, while that with FDOM was better described by the Freundlich model. The impacts caused by the dynamic changes of the chemical properties of DOM under natural conditions should therefore be considered in the risk assessment and remediation of soils contaminated with heavy metals.  相似文献   

10.
Natural surface coatings samples (NSCSs) from the surface of river shingles were employed to investigate the roles of non-residual and residual components of the NSCSs in controlling Cu and Zn adsorption via the selective extraction techniques and statistical analysis. The results indicate that the greatest contribution to metals adsorption on a molar basis was from Mn oxides in the non-residual fraction. Metals adsorption capacities of Mn oxides exceeded those of Fe oxides by one order of magnitude, fewer roles were found attributing to adsorption by organic materials (OM), and the estimated contribution of the residual fraction to metals adsorption was insignificant. These results implied that Mn oxides were the most important component in controlling heavy metals in aquatic environments. Experiments with Cu and Zn adsorption measured together showed that Cu severely interfered with Zn adsorption to the NSCSs and vice versa under the conditions of the two coexisted ions adsorption.  相似文献   

11.
The chemical speciation of trace metals in natural waters has important implications for their biogeochemical behavior. Trace metals are present in natural waters as dissolved species and associated with colloids and particles. The complexation of one trace metal (Cd and Zn at 200 and 390 microg/l respectively) with a green alga Pseudokirchneriella subcapitata in colloid-free algal culture medium and in presence of colloidal humic substances (HS) is presented. The influence of the nature of colloids was also addressed using three "standard" HS: fulvic acid (FA) and, soil (SHA) and peat humic acids (PHA). The chemical speciation model, MINTEQA2, was used to simulate the influence of pH and standardized culture medium on metal association with humic substances. The model was successfully modified to consider the differences in the metal complexation with fulvic (FA) and humic acids (HA). The deviations of concentrations of metals associated with HS between experimental results and model predictions were within a factor of approximately 2. The results of speciation model highlight the influence of the experimental conditions (pH, EDTA) used for alga bioassay on the behavior of Cd and Zn. The computed speciation suggests working with a pH buffered/EDTA-free mixture to avoid undesirable competition effects. The behavior of Cd and Zn in solution is more strongly influenced by HS than by alga. Metal-HS associations depend on metal and humic substance nature and concentration. Cd is complexed to a higher extent than Zn, in particular at larger HS concentration, and the complexation strength is in the order FA相似文献   

12.
Leaching of heavy metals from contaminated soils using EDTA   总被引:40,自引:0,他引:40  
Ethylenediaminetetraacetic acid (EDTA) extraction of Zn, Cd, Cu and Pb from four contaminated soils was studied using batch and column leaching experiments. In the batch experiment, the heavy metals extracted were virtually all as 1:1 metal-EDTA complexes. The ratios of Zn, Cd, Cu and Pb of the extracted were similar to those in the soils, suggesting that EDTA extracted the four heavy metals with similar efficiency. In contrast, different elution patterns were obtained for Zn, Cd, Cu and Pb in the column leaching experiment using 0.01 M EDTA. Cu was either the most mobile or among the most mobile of the four heavy metals, and its peak concentration corresponded with the arrival of full strength EDTA in the leachate. The mobility of Zn and Cd was usually slightly lower than that of Cu. Pb was the least mobile, and its elution increased after the peaks of Cu and Zn. Sequential fractionations of leached and un-leached soils showed that heavy metals in various operationally defined fractions contributed to the removal by EDTA. Considerable mobilisation of Fe occurred in two of the four soils during EDTA leaching. Decreases in the Fe and Mn oxide fraction of heavy metals after EDTA leaching occurred in both soils, as well as in a third soil that showed little Fe mobilisation. The results suggest that the lability of metals in soil, the kinetics of metal desorption/dissolution and the mode of EDTA addition were the main factors controlling the behaviour of metal leaching with EDTA.  相似文献   

13.
Sundance sunflowers were subjected to contaminated solutions containing 3, 4, or 5 heavy metals, with and without EDTA. The sunflowers exhibited a metal uptake preference of Cd=Cr>Ni, Cr>Cd>Ni>As and Fe>As>Cd>Ni>Cr without EDTA and Cr>Cd>Ni, Fe>As>Cd>Cr>Ni with EDTA. As uptake was not affected by other metals, but it decreased Cd and Ni concentration in the stems. The presence of Fe improved the translocation of the other metals regardless of whether EDTA was present. In general, EDTA served as a hindrance to metal uptake. For the experiment with all five heavy metals, EDTA decreased Cd in the roots and stems from 2.11 to 1.36 and from 2.83 to 2.3 2mg g(-1) biomass, respectively. For the same conditions, Ni in the stems decreased from 1.98 to 0.94 mg g(-1) total metal uptake decreased from 14.95 mg to 13.89 mg, and total biomass decreased from 2.38 g to 1.99 g. These results showed an overall negative effect in addition of EDTA. However it is unknown whether the negative effect was due to toxicity posed by EDTA or the breaking of phytochelatin-metal bonds. The most important finding was the ability of Sundance sunflowers to achieve hyperaccumulator status for both As and Cd under all conditions studied. Ni hyperaccumulator status was only achieved in the presence of three metals without EDTA.  相似文献   

14.
Ninety-eight surface soils were sampled from the uplands of England and Wales, and analysed for loss-on-ignition (LOI), and total and dissolved base cations, Al, Fe, and trace heavy metals (Cu, Zn, Cd, Pb). The samples covered wide ranges of pH (3.4-8.3) and LOI (9-98%). Soil metal contents measured by extraction with 0.43 mol l-1 HNO3 and 0.1 mol l-1 EDTA were very similar, and generally lower than values obtained by extraction with a mixture of concentrated nitric and perchloric acids. Total heavy metal concentrations in soil solution depend positively upon soil metal content and [DOC], and negatively upon pH and LOI, values of r2 ranging from 0.39 (Cu) to 0.81 (Pb). Stronger correlations (r2=0.76-0.95) were obtained by multiple regression analysis involving free metal ion (Cu2+, Zn2+, Cd2+, Pb2+) concentrations calculated with the equilibrium speciation model WHAM/Model VI. The free metal ion concentrations depend positively upon MHNO3 and negatively upon pH and LOI. The data were also analysed by using WHAM/Model VI to describe solid-solution interactions as well as solution speciation; this involved calibrating each soil sample by adjusting the content of "active" humic matter to match the observed soil pH. The calibrated model provided fair predictions of total heavy metal concentrations in soil solution, and predicted free metal ion concentrations were in reasonable agreement with the values obtained from solution-only speciation calculations.  相似文献   

15.
Little Rock Lake, a small (18 ha), low-alkalinity (25 microeq litre(-1), pH 6.1) seepage lake in northern Wisconsin, was divided into two basins by a flexible, inert barrier and, beginning in spring 1985, the north basin was acidified in three 2-year steps to pH 5.6, 5.1 and 4.7. The annual average pH of the reference basin remained near 6.1. As part of a comprehensive programme to determine the chemical and biological responses to acidification, minor metals (Al, Fe, Mn) and trace metals (Cd, Cu, Pb, Zn) in lake water (0.4 microm pore filtered samples), periphyton, zooplankton, and yellow perch (Perca flavescens) were measured. At pH 5.6, dissolved Mn and Fe increased in the acidified basin. At pH 5.1 and 4.7, dissolved Al, Fe, Mn, Cd and Zn were elevated in the acidified basin. At pH 4.7, dissolved Pb in the acidified basin became elevated over reference basin levels. Dissolved Cu remained similar in both basins down to pH 4.7. Cd burdens in periphyton collected on artificial substrates were lower in the treatment basin at pH 5.1 (1.8 microg g(-1) dry wt.) than in the reference basin at pH 6.1 (7.5 microg g(-1) dry wt.), but Al and Fe burdens in periphyton were similar in both basins. Likewise, Cd levels in muscle tissue of perch from the treatment basin at pH 4.7 were lower (26 ng g(-1) dry wt.) than in the reference basin at pH 6.1 (36 ng g(-1) dry wt.); Al and Fe burdens were similar in perch muscle tissue from both basins. Levels of Cd and Fe in zooplankton from the acidified basin at pH 4.7 were approximately equal to 2x higher than in animals from the reference basin. In both basins of the lake, Al and Cd levels in lake biota decreased with increasing trophic level, demonstrating that food chain biomagnification does not occur for these metals.  相似文献   

16.
Study of trace metal leaching from coals into seawater   总被引:1,自引:0,他引:1  
The behaviour of three South African coals in water and, particularly in seawater, was examined. A sequential speciation procedure used to evaluate trace metal partitioning in coal has shown that trace metals will not be easily released from these coals into environmental ecosystems. Only a few trace elements are slightly leached from these coals into water or seawater at pH around 8. On the other hand, Mn is highly leached from these coals into water or seawater. It has been clearly shown that Mn concentrations are highly correlated to sulfate and calcium concentrations indicating that Mn is mainly solubilized into water simultaneously to gypsum; the leaching efficiency being severely reduced for coal having a high calcite content. The leaching percentage of Mn into seawater is enhanced by the presence of seawater salts that increases gypsum solubility. The leaching process of Mn from coal into water or seawater is governed by gypsum solubilization and is relatively rapid during the first thirty minutes, then very slow. In this study, it has been also shown that, depending on their physico-chemical properties, trace metals may be removed from seawater solutions in the presence of coal having a high calcite content. In this work, it has been also shown that some elements, particularly Fe, are greatly solubilized into seawater in the presence of a strong chelating agent like EDTA. Like for Mn, the leaching rate of metals from coal in the presence of EDTA is relatively rapid during the first 30 min then much slower, suggesting a solubilization process simultaneously to gypsum or/and calcite solubilization.  相似文献   

17.
The study of operating variables in soil washing with EDTA   总被引:7,自引:0,他引:7  
This study discusses the operating variables for removal of metals from soils using EDTA, including the type of EDTA, reaction time, solution pH, dose, temperature, agitation, ultrasound and number of extractions. For As, Cd, Cu, Pb and Zn, the removal efficiency order was: H4-EDTA > Na2EDTA > (NH4)2EDTA. At low EDTA concentrations the removal increased progressively with increasing dose while above 0.4 mmol/g only small increases in extraction efficiency were observed. EDTA induced a two-step process including a rapid desorption within the first hour, and a gradual release in the following hours. The extraction efficiency of metals decreased with increasing pH in the range of 2-10. Consecutive extractions using low concentrations were more effective than a single extraction with concentrated EDTA if the same dose of EDTA was used.  相似文献   

18.

Size-resolved trace metal concentrations at two background sites were assessed during a 1-year observation campaign, with the measurements performed in parallel at two mountain sites, where Mt. Dinghu (DHS) located in the rural region of Pearl River Delta (PRD) and Mt. Gongga (GGS) located in the Tibetan Plateau region. In total, 15 selected trace elements (Mg, Al, K, V, Mn, Fe, Cu, Zn, As, Mo, Ag, Cd, Ba, Tl, and Pb) in aerosol samples were determined using inductively coupled plasma mass spectrometry (ICPMS). The major metals in these two mountain sites were Fe, K, Mg, and Ca with concentrations ranging between 241 and 1452 ng/m3, 428 and 1351 ng/m3, 334 and 875 ng/m3, and 376 and 870 ng/m3, respectively, while the trace metals with the lowest concentrations were Mo, Ag, Cd, and Tl with concentrations lower than 4 ng/m3 in DHS and 2 ng/m3 in GGS. The pronounced seasonal variability in the trace elements was observed in DHS, with lower concentrations in spring and summer and relatively high in winter and autumn, whereas seasonal variance of trace elements is hardly observed in Mt. Gongga. The size distribution pattern of crustal elements of Al, Mg, K, Ba, and Fe was quite similar in DHS and GGS, which were mainly found in coarse particles peaked at 4.7–5.8 μm. In addition, V, Mo, Ag, and Tl were also concentrated in coarse particles, although the high enrichment factor (EF?>?100) of which suggested anthropogenic origin, whereas trace metals of Cd, Mn, Zn, As, Cu, and Pb concentrated in fine mode particles. Specifically, these trace metals peak at approximately 1.5 μm in DHS, while those in GGS peaked at diameter smaller than 0.3 μm, indicating the responsible for long-range transport from the far urban and industrialized areas. Multivariate receptor model combined with the enrichment factor results demonstrated that the trace elemental components at these two background sites were largely contributed from the fossil fuel combustion (55.4% in DHS and 44.0% in GGS) and industrial emissions factors (20.1% vs. 26.5%), which are associated with long distance transport from the coastal area of Southeast China and the Northwestern India, respectively, as suggested by the backward air mass trajectory analysis. Local sources from soil dust contributed a minor variance for trace elements in DHS (9.7%) and GGS (13.8%), respectively.

  相似文献   

19.
The effect of sewage sludge on the mobility and the bioavailability of trace metals in plant-soil systems have aroused wide interested and been widely explored. Based on a wheat-cultivating experiment, the effect of municipal sludge compost (MSC) on the mobility and bioavailability of Cd in a soil-wheat system was studied. With the application of MSC, soil organic matter (SOM), total nitrogen (TN), and total phosphorus (TP) in the soil increased significantly, while concentrations of trace metals (Cu, Zn, Ni, Pb, Cd) were below the China’s minimum thresholds. The application of MSC could improve wheat growth. The application of MSC at the rate of 0.5 % had no significant effect on the chemical fraction distribution of Cd in soil. In two soil treatments, Cd mainly existed in the labile chemical fractions (exchangeable chemical fraction (EXCF) and carbonate chemical fraction (CABF)). However, the application of MSC could reduce accumulation of Cd by wheat. Cd contents in each part of the MSC-applied wheat were significantly less than that of non-MSC-applied wheat. In the tested soils, the extractable concentrations decreased in the order: EDTA > MgCl2 ≈ NH4OAc > DTPA. There were no significant differences between soil treatments in the amounts of extractable Cd when the extraction was done under neutral conditions, although significant differences were observed when the extraction was done under alkaline conditions. In this study, the DTPA extraction procedure provided a good indication of Cd bioavailability. Our results suggest that, in the short term at least, amending soils with MSC may benefit crop dry matter production while not increasing the risk of human exposure to Cd through consumption of wheat grown on MSC-amended soils.  相似文献   

20.
《Chemosphere》2007,66(11):2440-2448
Aerosol samples were collected from Kanazawa, Japan to examine the size distribution of 12 elements and to identify the major sources of anthropogenic elements. Key emission sources were identified and, concentrations contributed from individual sources were estimated as well. Concentrations of elements V, Ca, Cd, Fe, Ba, Mg, Mn, Pb, Sr, Zn, Co and Cu in aerosols were determined with ICP-MS. The results showed that Ca, Mg, Sr, Mn, Co and Fe were mainly associated with coarse particles (>2.1 μm), primarily from natural sources. In contrast, the elements Zn, Ba, Cd, V, Pb and Cu dominated in fine aerosol particles (<2.1 μm), implying that the anthropogenic origin is the dominant source. Results of the factor analysis on elements with high EFCrust values (>10) showed that emissions from waste combustion in incinerators, oil combustion (involving waste oil burning and oil combustion in both incinerators and electricity generation plants), as well as coal combustion in electricity generation plants were major contributors of anthropogenic metals in the ambient atmosphere in Kanazawa. Quantitatively estimated sum of mean concentrations of anthropogenic elements from the key sources were in good agreement with the observed values. Results of this study elucidate the need for making pollution control strategy in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号