首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Oxygen consumption of individual larvae of the Antarctic sea-star Odontaster validus was measured during the 50-day period following fertilisation. Values ranged from 0.76 pmol O2 h-1 for one specimen at the coeloblastula stage to 77.6 pmol O2 h-1 for one bipinnaria larva. At 0°C the mean oxygen consumption rate of an individual larva increased from 10.9 pmol O2 h-1 (standard error of the mean, SEM, 0.13) for a gastrula larva, 13 days post-fertilisation, to 25.4 pmol O2 h-1 (SEM 3.5) at the bipinnaria stage (50 days post-fertilisation). Gastrulae reared at -0.5°C did not have significantly different oxygen consumption rates between days 13 and 45 post-fertilisation (mean=11.4 pmol O2 h-1). Individual metabolic rates were highly variable, covering more than a 40-fold range. At 2°C gastrula oxygen consumption was on average 45% higher (17.35 pmol O2 h-1), giving a Q10 temperature effect of 4.4. For bipinnaria, mean oxygen consumption in 2°C larvae (31.4 pmol O2 h-1) was not significantly different from that in larvae at -0.5°C, suggesting bipinnaria metabolism may be less sensitive to temperature change than earlier stages. At 2°C the bipinnaria stage was reached at 30-35 days compared with 45-50 days at 0°C, giving a Q10 of 4.5 for temperature effects on development. The method here used a new, highly sensitive micro-respirometry method that is inexpensive and straightforward in design. Individual larvae of O. validus were held in 35- to 50-µl respirometers. These larvae have very low metabolic rates, and published work on such organisms have utilised at least 25 individuals per chamber. The oxygen content of the respirometers was measured using a 25-µl sample injected into a couloximeter. Oxygen consumption rates down to -1 pmol h-1 can be detected. Under optimum conditions oxygen consumption of a single larva of -4 pmol O2 h-1 was measured with an accuracy of ᆨ%. Values of ~15 pmol h-1 could routinely be measured with this accuracy. This method would allow oxygen consumption to be evaluated in individual field-caught larvae of most marine ectotherms.  相似文献   

2.
The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18–30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6–12 μmol cm−3 sponge day−1. Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm−3 sponge day−1, and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.  相似文献   

3.
C. Lowe 《Marine Biology》2001,139(3):447-453
Oxygen consumption of juvenile scalloped hammerhead sharks, Sphyrna lewini, was measured in a Brett-type flume (volume=635 l) to quantify metabolic rates over a range of aerobic swimming speeds and water temperatures. Oxygen consumption (log transformed) increased at a linear rate with increases in tailbeat frequency and swimming speed. Estimates of standard metabolic rate ranged between 161 mg O2 kg-1 h-1 at 21°C and 203 mg O2 kg-1 h-1 at 29°C (mean-SD: 189ᆣ mg O2 kg-1 h-1 at 26°C). Total metabolic rates ranged from 275 mg O2 kg-1 h-1 at swimming speeds of 0.5 body lengths per second (L s-1) to a maximum aerobic metabolic rate of 501 mg O2 kg-1 h-1 at 1.4 L s-1. Net cost of transport was highest at slower swimming speeds (0.5-0.6 L s-1) and was lowest between 0.75 and 0.9 L s-1. Therefore, these sharks are most energy efficient at swimming speeds between 0.75 and 0.9 L s-1. These data indicate that tailbeat frequency and swimming speed can be used as predictors of metabolic rate of free-swimming juvenile hammerhead sharks.  相似文献   

4.
Several mechanisms are known to assist the survival of sponges in highly sedimented environments. This study considers the potential of sponge morphology and the positioning of exhalant water jets (through the osculum) in the adaptation of Haliclona urceolus to highly sedimented habitats. This sponge is cylindrical with an apical osculum, which is common in sedimented subtidal habitats at Lough Hyne Marine Nature Reserve, Cork, Ireland. Fifteen sponges were collected, preserved (killed with the structure and morphology maintained) and then replaced in a high sediment environment next to a living specimen (at 24 m). After 5 days, the sediment settled on both living and preserved sponges was collected and dried. No sediment was collected from living sponges, while preserved specimens had considerable amounts of settled sediment on their surfaces. The amount of sediment collected on these preserved specimens was significantly linearly correlated with sponge dry weight, maximum diameter and oscula width (R2>0.70, P<0.001, df=14). Observations of flow direction (using coloured dye) through H. urceolus showed that water is drawn into the sponge on its underside and exits via a large vertically pointing osculum. Sponge morphologies (shape) have often been considered as a means of passive adaptation to a number of different environmental parameters with oscula position enabling entrained flow through the sponge in high flow conditions. However, this study shows how the combination of sponge morphology (tubular shape) and positioning of the osculum may enable H. urceolus to survive in highly sedimented environments. Similar mechanisms may also aid the survival of some deep-water sponge species with similar morphologies.Communicated by J.P. Thorpe, Port Erin  相似文献   

5.
In some estuaries, the recruitment of epifaunal benthic invertebrates coincides with a significant environmental stress, low water-column dissolved oxygen, termed hypoxia (̀ mg O2 l-1). Recruitment of epifaunal species was measured in the lower York River, a subestuary of the Chesapeake Bay, USA, which experiences predictable, periodic hypoxia associated with neap/spring tidal cycling during summer. Recruitment substrata were exposed during 48-h deployments in two areas with differing levels of hypoxia, and epifauna were allowed to recruit during periods of low oxygen (neap tides) and high oxygen (spring tides) in 1996 and 1997. Recruitment was often high during neap tides, even when severe oxygen depletion (<0.5 mg O2 l-1, <0.71 ml O2 l-1) occurred during deployments; indeed, peak recruitment episodes of several dominant epifaunal taxa, and of total epifauna, coincided with hypoxic events during both summers. Increased recruitment during neap tides suggests that factors besides hypoxia influenced recruitment in the York River; these factors may have included changes in larval availability and lower current speeds. This study illustrates how the relationship between recruitment and large-scale stresses, such as hypoxia, may be difficult to predict, since large-scale stresses are often correlated with numerous other factors. Short-term hypoxia appears to have little effect on recruitment in the field for many epifaunal species in this ecosystem, which may explain, in part, why substrata exposed for longer durations (1 month) in this system showed few effects of hypoxia on community composition or diversity. High larval tolerance of hypoxic stress may allow communities to persist even though the summer hypoxia season coincides with the recruitment of many epifaunal species. Electronic Supplementary Material is available if you access this article at http://dx.doi.org/10.1007/s00227-002-0930-6. On that page (frame on the left side), a link takes you directly to the supplementary material.  相似文献   

6.
The common Antarctic nudibranch Austrodoris kerguelenensis (Bergh) contains diterpene diacylglycerides only present in its external body parts. These compounds provide a chemical defense against sympatric predators, such as the seastar Odontaster validus Koehler. Bioassays conducted with O. validus revealed that live nudibranchs, mantle tissue and Et2O extract of the A. kerguelenensis mantle deterred feeding by the seastar. Further bioassays testing organic fractions of the Et2O mantle extract showed that the diterpene diacylglycerides, as well as corresponding monoacylglycerides and monoacylglycerides of regular fatty acids, were responsible for the feeding deterrence in O. validus. We suggest that A. kerguelenensis derives the bioactive diacylglycerides by de novo biosynthesis rather than by sequestration from its sponge diet, since the mollusk does not contain active metabolites in the viscera, and neither the active compounds nor precursors were detected in the sponge diet. Furthermore, A. kerguelenensis did not show a strong chemodetection or feeding preference for its main diet, hexactinellid sponges, in Y-maze and food choice experiments, respectively.  相似文献   

7.
The influence of oxygen concentration on total and basal metabolism, scope of activity, drag force and duration of jerks, time spent swimming and energy cost of locomotion in Moina micrura Hellich females cultured under hypo- and normoxia was investigated. Scope of activity (Ql) of hemoglobin-rich red individuals (Ma) acclimated to hypoxia depended less upon oxygen concentration than that of non-acclimated, pale individuals (Mna). Within the range 10-0.3 mg O2 l-1 Ql decreased 4.4-fold in Ma and 62.5-fold in Mna. In both Ma and Mna the integral drag force of antenna fell from 0.22ǂ.07 to 0.12ǂ.04 dyn (1 dyn=1·10-5 N), the duration of jerks increased from 0.06ǂ.01 to 0.1ǂ.02 s in the range from ~2.0 mg O2 l-1 to sublethal oxygen concentrations. At 0.7-0.8 mg O2 l-1 Mna stopped filtration and increased time spent swimming. In contrast, even under more severe hypoxia (~0.2 mg O2 l-1), Ma maintained their filtering activity using energy (up to 80% of total metabolism) achieved due to increased oxygen capacity of the blood. Separating locomotion and feeding functions, M. micrura can spend less energy for swimming and use its energy budget more plastically under changing environmental conditions.  相似文献   

8.
Adaptive processes linked to overall metabolism were studied in terms of oxygen consumption and ammonia excretion in each of three self-contained krill populations along a climatic gradient. In the Danish Kattegat, krill were exposed to temperatures which ranged from 4°C to 16°C between seasons and a vertical temperature gradient of up to 10°C during summer. In the Scottish Clyde Sea, water temperatures varied less between seasons and the vertical temperature gradient in summer was only 3°C. Temperatures in the Ligurian Sea, off Nice, were relatively constant around 12-13°C throughout the year, with a thin surface layer (20-30 m) of warm water developing during summer. The trophic conditions were rich in the Kattegat and, particularly, in the Clyde, but comparatively poor in the Ligurian Sea. Oxygen consumption increased exponentially with increasing experimental temperature, which ranged from 4°C to 16°C. Overall respiration rates were between 19.9 and 89.9 µmol O2 g-1 dry wt h-1. Krill from the Kattegat, the Clyde Sea, and the Ligurian Sea all exhibited approximately the same level of oxygen consumption (30-35 µmol O2 g-1 dry wt h-1) when incubated at the ambient temperatures found in their respective environments (9°C, 5°C, and 12°C). This indicates that krill adjust their overall metabolic rates to the prevailing thermal conditions. The exception to this were the respiration rates of Ligurian krill from winter/spring, which were about twice as high as the rates from summer krill despite the fact that the thermal conditions were the same. This effect appears to result from enhanced somatic activity during a short period of increased food availability and reproduction. Accordingly, krill appears to be capable of adapting to both changing thermal and trophic conditions, especially when nutrition is a limiting factor in physiological processes.  相似文献   

9.
D. Julian  M. Chang  J. Judd  A. Arp 《Marine Biology》2001,139(1):163-173
We examined burrow irrigation activity by the mudflat worm Urechis caupo in response to suspended food, ambient hypoxia (down to 3.3 kPa PO2), hydrogen sulfide exposure (up to 100 µmol l-1), and short-term temperature change (range 10-22°C). In normoxic, nutrient-free water at 14°C, O2 consumption ( [(M)\dot]O2 ) \left( {\dot M{\rm O}_2 } \right) was 45 nmol min-1 g-1, water flow rate ( [(V)\dot]W ) \left( {\dot V_{\rm W} } \right) was 27 ml min-1 (0.66 ml min-1 g-1), frequency of peristaltic waves (FP) was 2.6 contractions min-1, stroke volume (SV) was 11 ml, and O2 extraction coefficient (EO2) was 0.27. Adding suspended food to the burrow water occasionally elicited stereotypical feeding behavior but had no effect on any measured variables during nonfeeding periods. Hypoxia greatly decreased [(M)\dot]O2 \dot M{\rm O}_2 (75% reduction at 3.3 kPa PO2) but did not affect [(V)\dot]W \dot V_{\rm W} , FP, SV, or EO2. Sulfide at 50 µmol l-1 or less had no effect on burrow irrigation activity, whereas 100 µmol l-1 sulfide decreased [(V)\dot]W \dot V_{\rm W} by 58% and FP by 50% but had no effect on SV. Temperature strongly affected [(V)\dot]W \dot V_{\rm W} (Q10 of 1.9 from 10°C to 22°C). We propose that U. caupo's ability to live in the hypoxic, sulfidic mud of productive mudflat environments, combined with its very efficient mucous net, allows it to process much less water for feeding than other suspension-feeding invertebrates. This, in turn, necessitates an efficient O2 extraction mechanism, which is provided by the water lung activity of U. caupo's unique hindgut.  相似文献   

10.
In the Red Sea, the zooxanthellate sponge Cliona vastifica (Hancock) is mainly present at >15 m depth or in shaded areas. To test whether its scarcity in unshaded areas of shallower waters is linked to the functional inefficiency of its photosymbionts at high irradiances, sponges were transferred from 30 m to a six times higher light regime at 12 m depth, and then returned to their original location. During this time, photosynthetic responses to irradiance were measured as rapid light curves (RLCs) in situ by pulse amplitude modulated (PAM) fluorometry using a portable underwater device, and samples were taken for microscopic determinations of zooxanthellar abundance. The zooxanthellae harboured by this sponge adapted to the higher irradiance at 12 m by increasing both their light saturation points and relative photosynthetic electron transport rates (ETRs). The ETRs at light saturation increased almost fourfold within 15–20 days of transfer to the shallower water, and decreased back to almost their original values after the sponges were returned to 30 m depth. This, as well as the fact that the photosynthetic light responses within an individual sponge were in accordance with the irradiance incident to specific surfaces, shows that these photosymbionts are highly adaptable to various irradiances. There was no significant change in the number of zooxanthellae per sponge area throughout these experiments, and the different photosynthetic responses were likely due to adaptations of the photosynthetic apparatus within each zooxanthella. In conclusion, it seems that parameters other than the hypothesised inability of the photosymbionts to adapt adequately to high light conditions are the cause of C. vastifica's rareness in unshaded shallow areas of the Red Sea. Received: 25 April 2000 / Accepted: 13 October 2000  相似文献   

11.
Biomass, photosynthesis and growth of the large, perennial brown alga Laminaria saccharina (L.) Lamour. were examined along a depth gradient in a high-arctic fjord, Young Sound, NE Greenland (74°18'N; 20°14'W), in order to evaluate how well the species is adapted to the extreme climatic conditions. The area is covered by up to 1.6-m-thick ice during 10 months of the year, and bottom water temperature is <0°C all year round. L. saccharina occurred from 2.5 m depth to a lower depth limit of about 20 m receiving 0.7% of surface irradiance. Specimen density and biomass were low, likely, because of heavy ice scouring in shallow water and intensive feeding activity from walruses in deeper areas. The largest specimens were >4 m long and older than 4 years. In contrast to temperate stands of L. saccharina, old leaf blades (2-3 years old) remained attached to the new blades. The old tissues maintained their photosynthetic capacity thereby contributing importantly to algal carbon balance. The photosynthetic characteristics of new tissues reflected a high capacity for adaptation to different light regimes. At low light under ice, or in deep water, the chlorophyll a content and photosynthetic efficiency (!) were high, while light compensation (Ec) and saturation (Ek) points were low. An Ec of 2.0 µmol photons m-2 s-1 under ice allowed photosynthesis to almost balance, and sometimes exceed, respiratory costs during the period with thick ice cover but high surface irradiance, from April through July. Rates of respiration were lower than usually found for macroalgae. Annual elongation rates of leaf blades (70-90 cm) were only slightly lower than for temperate L. saccharina, but specific growth rates (0.48-0.58 year-1) were substantially lower, because the old blades remained attached. L. saccharina comprised between 5% and 10% of total macroalgal biomass in the area, and the annual contribution to primary production was only between 0.1 and 1.6 g C m-2 year-1.  相似文献   

12.
This paper describes a closed-chamber method for measuring CO2 fluxes in intertidal soft sediments during periods of emersion. The method relies on closed-circuit incubations of undisturbed sediment and measurement of CO2 exchanges using an infrared gas analyser. The method was assessed during field experiments, both in light and dark conditions, on an exposed sandy beach and in an estuary. The rates of gross community production measured under moderate irradiance (4.2 mg C m-2 h-1 on the exposed sandy beach and 35 mg C m-2 h-1 in the estuary) are in good agreement with rates reported in the literature. In conjunction with appropriate sampling strategies, this method can be useful for estimating and comparing production of intertidal areas or for assessing factors that influence production.  相似文献   

13.
L. Wulff 《Marine Biology》1995,123(2):313-325
The common Caribbean starfish Oreaster reticulatus (Linnaeus) feeds on sponges by everting its stomach onto a sponge and digesting the tissue, leaving behind the sponge skeleton. In the San Blas Islands, Republic of Panama, 54.2% of the 1549 starfish examined from February 1987 to June 1990 at eight sites were feeding, and 61.4% of these were feeding on sponges, representing 51 species. Sponges were fed on disproportionately heavily in comparison to their abundance, which was only 9.7% of available prey. In feeding choice experiments, 736 pieces of 34 species of common sponges from a variety of shallow-water habitats, and also 9 ind of a coral, were offered to starfish in individual underwater cages. Acceptance or rejection of sponge species was unambiguous for 31 of the 34 species, and there was a clear relationship between sponge acceptability and sponge habitat. Starfish ate 16 of 20 species that normally grow only on the reefs, but only 1 of 14 species that live in the seagrass meadows and rubble flats surrounding the reefs. The starfish live in the seagrass meadows and rubble flats, and avoid the reefs, and so the acceptable reef sponges are generally inaccessible until a storm fragments and transports them into starfish habitat. After Huricane Joan washed fragments of reef sponges into a seagrass meadow in October 1988, starfish consumed the edible species. When the seagrass meadow was experimentally seeded with tagged reef sponge fragments in June 1994, O. reticulatus consumed edible species and accumulated in the area seeded. Reef sponges that were living in a seagrass meadow, from which O. reticulatus had been absent for at least 4 yr (from 1978 to 1982), were eliminated when the starfish migrated into the area, and the sponges have been unable to recolonize up to June 1994. O. reticulatus feeding and habitat preferences appear to restrict distributions of many Caribbean reef sponge species to habitats without O. reticulatus and may have exerted significant selective pressure on defences of those sponges that live in O. reticulatus habitats.  相似文献   

14.
Mutualistic relationships are ubiquitous in tropical coral reefs, but the costs and benefits to partner species are often poorly known. In Caribbean coral reefs, several species of snapping shrimp (Synalpheus spp.) dwell exclusively in marine sponges, which serve as both habitat and food source. A paired experimental design was used to examine the effects of Synalpheus occupancy on predation, morphology, and growth of their sponge host Lissodendoryx colombiensis in Bocas del Toro, Panama (9.351°N, 82.258°W) in June 2009. Shrimp occupancy significantly decreased consumption of sponges by a predatory sea star (Oreaster reticulatus) and also affected sponge morphology; sponges grown without shrimps decreased in canal size, in both the laboratory and the field. Shrimp occupancy had more ambiguous effects on sponge growth. In laboratory experiments, shrimp occupancy benefited sponge growth, although all sponges experienced overall decreases in mass. In field experiments, there were no significant differences in growth between occupied and empty sponges. However, the benefits of shrimp occupancy on sponge growth were negatively correlated with overall increases in sponge size; sponges that decreased in mass during the experiment benefited more from shrimp occupancy than sponges that increased in mass. These costs and benefits suggest that Synalpheus has variable effects on sponges: positive effects on sponges in the presence of predators, and/or when sponges are decreasing in mass (e.g., during periods of physical stress), but a negative effect on sponges during periods of active sponge growth.  相似文献   

15.
The subtidal crab Cancer pagurus (L.) experiences involuntary periods of emersion associated with practices used in their marketing and distribution. During 24 h emersion, impaired gill function caused an increase of circulating total ammonia (TA=NH3+NH4+) of 0.35 mmol TA l-1 (167%). The oxygen-binding characteristics of the haemocyanin of C. pagurus were examined at 10°C in the presence of total ammonia (0.2-1.0 mmol TA l-1). The haemocyanin-oxygen affinity was decreased in the presence of TA ((logP50/(log[TA]=0.16). Emersion induced significant acidosis and elevated circulating levels of haemolymph TA, lactate and urate, but all had returned to normal levels within 24 h of re-immersion. The accumulation of haemocyanin-modulating substances during 24 h emersion compensated partially (40%) for the effect of the acidosis, but the net effect of the emersion period was a significant decrease in oxygen affinity, corresponding to an increase of P50 (10°C ) from 1.24 kPa (immersed) to 1.96 kPa (24 h emersion). The implications of the findings are considered in terms of the effects and adaptations to emersion.  相似文献   

16.
We manipulated live sponges in Belize, Central America, Big Pine Key, Florida (USA), and Indian River lagoon, Florida (USA) in summer/autumn, 1988. At each location, live sponges of three species were placed within 0.5 cm of ceramic tiles. Tiles with synthetic sponges positioned in the same manner and tiles with no sponges served as controls. Of 26 recruiting species analyzed, only one (Sponge sp. 6 — Indian River) was inhibited by living sponges. Four species (Perophora regina — Belize;Aiptasia pallida — Big Pine Key; andCrassostrea virginica andAscidia nigra — Indian River) recruited in greater numbers in the presence of sponges, suggesting that some larvae may be attracted rather than repelled by sponge allelochemicals. Allelopathic effects were less important than small-scale flow effects and patchy larval supply in determining recruitment patterns on surfaces adjacent to sponges.  相似文献   

17.
The objective of this study was to provide a database of the incipient lethal concentrations for reduced dissolved oxygen (DO) for selected marine and estuarine species including 12 species of fish, 9 crustaceans, and 1 bivalve. All species occur in the Virginian Province, USA, which is a cold temperate region. The study period was August 1987 to September 1995. Standard bioassay procedures were employed, with most tests being of 4-day duration. Up to eight lethal concentrations (LCs) between LC05 and LC95 were estimated. The study provides four general conclusions about determining lethal thresholds of low DO for these organisms. First, the concentration response curve of most species did not change greatly beyond day 1 of the exposure with the exception of crustacean larvae, which were usually more sensitive on day 4, possibly due to molting. Second, acute LC50 values (1- to 4-day) for low DO were influenced by life-stage and habitat, with pelagic larvae generally being the most sensitive and benthic juveniles the least. Species mean LC50 values ranged from 1.4 to 3.3 mg l-1 for larvae, 1.0 to 2.2 mg l-1 for postlarvae, and 0.5 to 1.6 mg l-1 for juveniles. No intraspecific differences in LC50 were detected between larval stages in crustaceans or with age in larval fishes. The response range between LC05 and LC95 was narrowest for the least sensitive organisms (0.6 mg l-1), and broadened with sensitivity. The mean LC10:LC50 ratio for all species was 1.32 for larvae and juveniles, and 1.36 for postlarvae. The ratio for postlarvae represents only four species, and hence is not considered different from the other life stages. Third, variability increased with increased species and life stage sensitivity to low DO, and with endpoints of LC15 and below, which reduces the certainty of some of these results. Lastly, no influence of temperatures between 20°C and 30°C was detected in a small set of tests with thermally acclimated crustacean larvae. This data set has been used to describe protection limits for juvenile and adult survival, and for larval recruitment for the case of persistent (₄ h) low DO for estuarine and coastal waters of the Virginian Province, USA.  相似文献   

18.
Acetylene reduction rates were measured in lagoonal sediments, cyanobacterial mats and limestone surfaces between 1991 and 1995 at many sites, depths and seasons; all the studied substrata contained cyanobacteria. The acetylene reduction/15N2 fixation ratio was measured for the different communities and varied between 1.8 and 4.8, depending on substratum. Fixation rates were 1.7 to 7 times higher during daylight compared to night-time rates. N2 fixation rates ranged from 0.4 to 3.9 mg N m-2 day-1 for the lagoonal sediment/mat communities, and the rate was about 2 mg N m-2 day-1 for the lagoonal limestone substrata. Total lagoonal benthic N2 fixation contributed 24.4% of the total nitrogen requirement for the benthic primary production of benthic communities of the lagoon. The input of N2 fixation by the microbial planktonic communities (including cyanobacteria) of the lagoon, which are highly productive, is unquantified but is likely to be large.  相似文献   

19.
Stable oxygen and carbon isotope profiles ('18Oskeletal and '13Cskeletal), taken along the direction of growth from the umbo to the shell margin in shells of the pinnid Pinna nobilis, were used to reconstruct sea surface temperatures (SST) in the south-east Mediterranean and ontogenetic records of metabolic CO2 incorporation. Comparison of the seasonal cycle of SST, predicted from the '18Oskeletal record of a small (young) rapidly growing pinnid and temperature measured with a continuous in situ recorder showed that P. nobilis calcifies under isotopic equilibrium with surrounding seawater, thus indicating that P. nobilis shells can be used as a reliable predictor of SST. A 10-year SST record for the south-east Mediterranean was reconstructed from the shell profiles of four pinnid shells of different sizes and ages collected in 1995 and 1996. Reliable resolution of the seasonal SST could only be achieved during the first 4 years of shell growth. As the pinnids grew older, the temperature record was poorly resolved because the shell growth had diminished with age, resulting in time-averaging of the record. The amplitude of the generated seasonal temperature cycle compared favourably (DŽ°C) with a long-term temperature record from northern Mediterranean waters. Clear seasonal cycles in '13Cskeletal were observed with an amplitude of ~1.0‰, similar to the calculated seasonal changes in '13C of seawater (0.6‰) overlying seagrass meadows. An ontogenetic trend towards less positive '13Cskeletal values was too large to be attributed to any decrease in '13C in seawater resulting from the invasion of anthropogenic CO2. It is suggested that the temporal changes of '13Cskeletal are due to incorporation of respiratory CO2 into the extrapallial fluid and reflect changes in the metabolic activity of the pinnid rather than changes in the isotopic composition of dissolved inorganic carbon within the surrounding seawater.  相似文献   

20.
Cyanobacterial symbionts in the sponge Diacarnus erythraenus from the Red Sea were identified in both adult sponges and their larvae by 16S rDNA sequencing. A single cyanobacterial type was found in all samples. This cyanobacterial type is closely related to other sponge cyanobacterial symbionts. The cyanobacterial rDNA, together with the morphological analysis by electron and fluorescence microscopy, provided evidence for vertical transmission of the symbionts in this sponge. In addition, we show phenotypic plasticity of the symbionts inside the sponge, probably as a result of variability in light availability inside the sponge tissue. Finally, the reproduction of Diacarnus erythraenus is also described.Matan Oren, Laura Steindler have contributed equally to the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号