首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time between swine (Sus scrofa) manure application to soil as a crop fertilizer, the first rainfall event, and the frequency of rainfall events should influence leaching potential of fecal pathogens. Soil microcosms were inoculated in the lab with a swine manure isolate of Escherichia coli, strain RS2G, expressing green fluorescent protein, to examine how timing and frequency of rainfall events influences RS2G leaching and survival in soil. Liquid swine manure inoculated with RS2G was applied to intact soil cores (20 cm in diameter x 30 cm long) 4, 8, or 16 d before the first rainfall event (50.8 mm over a 4-h period), and each core received one to three rainfall events. Manure application methods (no-till surface-broadcast, broadcast and incorporated, and tilled before broadcast) had no affect on leaching, although there was greater survival in soils when the manure had been incorporated. Most of the RS2G in the leachate appeared following the first rainfall event and RS2G leaching decreased with increasing time between manure application and the first rainfall, although leachates contained as much as 3.4 to 4.5 log colony forming units (CFU) 100 mL(-1) of RS2G when the first rainfall occurred 16 d after manure application. With increasing frequency of rainfalls there was a decrease in subsequent concentrations of RS2G in the leachate. There was no correlation between leachate RS2G and total coliforms or fecal streptococci concentrations. Soil RS2G numbers were 1 to 10% of the inoculum regardless of the length of time between manure application and the first rainfall. RS2G leaching was mostly influenced by the time between manure application and first rainfall event, and significant leaching and survival in soil was possible even if the first rain occurred 16 d after manure application.  相似文献   

2.
ABSTRACT: To investigate the impacts of urbanization and climatic fluctuations on stream flow magnitude and variability in a Mediterranean climate, the HEC‐HMS rainfall/runoff model is used to simulate stream flow for a 14‐year period (October 1, 1988, to September 30, 2002) in the Atascadero Creek watershed located along the southern coast of California for 1929, 1998, and 2050 (estimated) land use conditions (8, 38 and 52 percent urban, respectively). The 14‐year period experienced a range of climatic conditions caused mainly by El Nino‐Southern Oscillation variations. A geographic information system is used to delineate the watershed and parameterize the model, which is calibrated using data from two stream flow and eight rainfall gauges. Urbanization is shown to increase peak discharges and runoff volume while decreasing stream flow variability. In all cases, the annual and 14‐year distributions of stream flow are shown to be highly skewed, with the annual maximum 24 hours of discharge accounting for 22 to 52 percent of the annual runoff and the maximum ten days of discharge from an average El Nino year producing 10 to 15 percent of the total 14‐year discharge. For the entire period of urbanization (1929 to 2050), the average increase in annual maximum discharges and runoff was 45 m3/s (300 percent) and 15 cm (350 percent), respectively. Additionally, the projected increase in urbanization from 1998 to 2050 is half the increase from 1929 to 1998; however, increases in runoff (22 m3/s and 7 cm) are similar for both scenarios because of the region's spatial development pattern.  相似文献   

3.
Use of adjuvants to minimize leaching of herbicides in soil   总被引:1,自引:0,他引:1  
Excessive leaching of herbicides affects their efficacy against target weeds and results in contamination of groundwater. Use of adjuvants that can weakly bind herbicides and in turn release them slowly is a valuable technique to prolong the efficacy of herbicides and to minimize their leaching into groundwater. Effects of activated charcoal, three humic substances (Enersol SP 85%, Enersol 12%, and Agroliz), or a synthetic polymer (Hydrosorb) on the leaching of bromacil, dicamba, and simazine were investigated in leaching columns using a Candler fine sand (Typic Quartzipsamment). The addition of adjuvants had no harmful effects on physical properties of the soil as evident from lack of its affects on water percolation. When no adjuvants were used, 69%, 37%, and 4% of applied dicamba, bromacil, and simazine, respectively, were leached in the first pore volume of leachate (⋍3.2 cm rainfall). With five pore volumes of leachate (⋍16 cm rainfall), bromacil and dicamba were leached completely and only 80% of simazine was leached. Using Enersol 12% adjuvant resulted in a 13%–18% reduction in leaching of dicamba and bromacil in five pore volumes of leachate. The leaching of simazine was significantly decreased when any of the five adjuvants mentioned above were used. However, the decrease in leaching was significantly greater when using Enersol SP 85% or Enersol 12% (24%–28%) than when using the other adjuvants (12%–16%).  相似文献   

4.
Extreme climate events, floods, and drought, cause huge impact on daily lives. In order to produce society resilient to extreme events, it is necessary to assess the impact of frequent and high intensity storm events on design parameters. This article describes a methodology to develop future peak “design discharges” throughout the United States that can be used as a guidance to map future floodplains. In order to develop a lower and upper limit for anticipated peak flow discharges, two future growth scenarios — Representative Concentration Pathways (RCPs)‐RCP 2.6 and 8.5 were identified as the weak and strong climate scenario respectively based on the output from the global climate models. The Generalized Least Square technique in United States Geological Survey's Weighted Multiple Regression (WREG) program was used to develop regression equations that relate peak discharges to basin and climate parameters of the contributing watershed. The design discharges reflect the most recent climate model results. Number of frost days, heavy rainfall days, high temperature days, and snow depth were found to be the common extreme climate parameters influencing the regression equations. This methodology can be extended to other flood frequency events if rainfall data is available. The future discharges can be utilized in hydraulics models to estimate floodplains that can assist in resilient infrastructure planning and outline climate change adaptation strategies.  相似文献   

5.
Extremely sandy soils and poorly distributed high annual rainfall in the state of Florida contribute to significant leaching losses of nutrients from routine fertilization practices. A leaching column experiment was conducted to evaluate the leaching losses of nutrients when using currently available N, P, K blend fertilizers for young citrus tree fertilization. Fertilizer blends included NH4NO3, Ca(NO3)2, IBDU, IBDU plus Escote, Nutralene, Osmocote, and Meister. Following leaching of 1000 ml of water through soil columns, which simulates leaching conditions with 26 cm of rainfall, the amount of NO3 and NH4 recovered in the leachate from soil columns amended with an NH4NO3 blend accounted for 37% and 88% of the respective nutrients contained in the quantity of blend per column. The corresponding values for soil columns amended with a Ca(NO3)2 blend were 48% and 100%. Leraching losses of both NO3 (<3%) and NH4 (<4%) were drastically decreased when using controlled-release fertilizers. The recoveries of P and K in 1000 ml of leachate were 1.3% and 8%, respectively, of the nutrients added as Osmocote, which contained coated P and K sources. In the case of the rest of fertilizer blends, the recoveries of P and K in 1000 ml of leachate were as high as 52%–100% and 28%–100%, respectively. Therefore, controlled-release technology offers an important capability for minimizing leaching losses of nutrients.  相似文献   

6.
Maize (Zea mays L.) production in the smallholder farming areas of Zimbabwe is based on both organic and mineral nutrient sources. A study was conducted to determine the effect of composted cattle manure, mineral N fertilizer, and their combinations on NO3 concentrations in leachate leaving the root zone and to establish N fertilization rates that minimize leaching. Maize was grown for three seasons (1996-1997, 1997-1998, and 1998-1999) in field lysimeters repacked with a coarse-grained sandy soil (Typic Kandiustalf). Leachate volumes ranged from 480 to 509 mm yr(-1) (1395 mm rainfall) in 1996-1997, 296 to 335 mm yr(-1) (840 mm rainfall) in 1997-1998, and 606 to 635 mm yr(-1) (1387 mm rainfall) in 1998-1999. Mineral N fertilizer, especially the high rate (120 kg N ha(-1)), and manure plus mineral N fertilizer combinations resulted in high NO3 leachate concentrations (up to 34 mg N L(-1)) and NO3 losses (up to 56 kg N ha(-1) yr(-1)) in 1996-1997, which represent both environmental and economic concerns. Although the leaching losses were relatively small in the other seasons, they are still of great significance in African smallholder farming where fertilizer is unaffordable for most farmers. Nitrate leaching from sole manure treatments was relatively low (average of less than 20 kg N ha(-1) yr(-1)), whereas the crop uptake efficiency of mineral N fertilizer was enhanced by up to 26% when manure and mineral N fertilizer were applied in combination. The low manure (12.5 Mg ha(-1)) plus 60 kg N ha(-1) fertilizer treatment was best in terms of maintaining dry matter yield and minimizing N leaching losses.  相似文献   

7.
The breakpoint rainfall hydrology and pesticide options of the field scale model CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) were used to predict average concentrations of hexazinone [3 cyclohexyl-6-(dimethyl-amino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] in stormflow from four forested watersheds in the upper Piedmont region of Georgia. Predicted concentrations were compared with measured concentrations recorded over a 13-month period. CREAMS accurately predicted hexazinone concetrations in the initial stormflow events which also contained the highest concentrations. The model underestimated the hexazinone concentrations in stormflow two months and greater following pesticide application. In a companion study, the daily rainfall option of the CREAMS model was used to evaluate the reltive risk associated with the maximum expected concentration of hexazinone, bromacil (5-bromo-3 sec-butyl-6 methyuracil), picloram (4-amino-3,5,6 trichloropicolinic acid), dicamba (3,6-dichloro-0-anisic acid), and triclopyr {[(3,5,6-trichloro-2-pyridinyl)oxy] acetic acid} in stormflow from small forested watersheds. The model predicted the following order of potential residue appearance in stormflow: bromacil>triclopyr>hexazinone>picloram>dicamba. Subsurface movement of residues via interflow and deep leaching losses are not simulated by the version of CREAMS used in these studies.  相似文献   

8.
In the Atlantic Coastal Plain region of southern Georgia (USA), cotton (Gossypium hirsutum L.) acreage increased threefold in the past decade. To more effectively protect water quality in the region, best management practices are needed that reduce pesticide runoff from fields in cotton production. This study compared runoff of two herbicides, fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)-phenyl]-urea] and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine], from plots in strip-tillage (ST) and conventional-tillage (CT) management near Tifton, GA. Rainfall simulations were conducted one day after preemergence herbicide applications to 0.0006-ha plots and runoff from 0.15-ha plots due to natural rainfall following preemergence pendimethalin and fluometuron and postemergence fluometuron use was monitored. Pendimethalin runoff was greater under CT than ST due to strong pendimethalin soil sorption and higher erosion and runoff under CT. The highest losses, 1.3% of applied in CT and 0.22% of applied in ST, were observed during rainfall simulations conducted 1 DAT. Fluometuron runoff from natural rainfall was substantially lower from ST than from CT plots but the trend was reversed in rainfall simulations. In all studies, fluometuron runoff was also relatively low (<1% of applied), and on plots under natural rainfall, desmethylfluometuron (DMF) represented about 50% of total fluometuron runoff. Fluometuron's relatively low runoff rate appeared linked to its rapid leaching, and high DMF detection rates in runoff support DMF inclusion in fluometuron risk assessments. Results showed that ST has the potential to reduce runoff of both herbicides, but fluometuron leaching may be a ground water quality concern.  相似文献   

9.
The flow records of the Rivers Bure, Nar and Wensum in eastern England have been examined with the aim of identifying long-term changes in flow behaviour relating to variations in rainfall amount, land use, land drainage intensity and water resources use. In the study area, and since 1931, there is no evidence of long-term change in rainfall amount or distribution, on either an annual or seasonal basis. Despite changes in water resources use and catchment characteristics since the beginning of the century, such as the ending of water milling and increased land drainage and arable farming, rainfall-runoff modelling over the period 1964-1992 showed that the relationship between rainfall and runoff has remained essentially unchanged in the three study rivers. A catchment resource model used to 'naturalise' the historic flow records for the period 1971-1992 to account for the net effect of water supply abstractions and discharges revealed that mean river flows have been altered by surface water and groundwater abstractions, although the average losses to mean weekly flows due to net abstractions for all water uses was no greater than 3%. Greater losses occurred during drought periods as a result of increased consumptive use of water for spray irrigation and amounted to a maximum loss of 24% in the Nar catchment. In lowland areas such as eastern England that are prone to summer dry weather and periodic drought conditions, an integrated approach to river basin management, as advocated by the EU Framework Directive, is recommended for future management of surface and groundwater resources for public water supplies, river regulation purposes and industrial and agricultural demands.  相似文献   

10.
ABSTRACT: An evaluation of flood frequency estimates simulated from a rainfall/runoff model is based on (1) computation of the equivalent years of record for regional estimating equations based on 50 small stream sites in Oklahoma and (2) computation of the bias for synthetic flood estimates as compared to observed estimates at 97 small stream sites with at least 20 years of record in eight eastern states. Because of the high intercorrelation of synthetic flood estimates between watersheds, little or no regional (spatial) information may be added to the network as a result of the modeling activity. The equivalent years of record for the regional estimating equations based totally on synthetic flood discharges is shown to be considerably less than the length of rainfall record used to simulate the runoff. Furthermore, the flood estimates from the rainfall/runoff model consistently underestimate the flood discharges based on observed record, particularly for the larger floods. Depending on the way bias is computed, the synthetic estimate of the 100-year flood discharge varies from 11 to 29 percent less than the value based on observed record. In addition, the correlation between observed and synthetic flood frequency estimates at the same site is also investigated. The degree of correlation between these estimates appears to vary with recurrence interval. Unless the correlation between these two estimates is known, it is not possible to compute a weighted estimate with minimum variance.  相似文献   

11.
Macropore flow is a key factor determining pesticide fate, but models accounting for this process need parameters that cannot be easily measured. This study was conducted to investigate the use of inverse techniques to estimate parameters controlling macropore flow and pesticide fate in the dual-permeability model MACRO. Undisturbed columns were sampled at three landscape positions (hilltop, slope, hollow) with contrasting texture and organic carbon content. Transient leaching experiments were performed for an anionic tracer and the herbicide MCPA (4-chloro-2methylphenoxy acetic acid) during a 4-mo period, first under natural rainfall, and then under controlled irrigation in the laboratory. The tracer breakthrough for the liner-textured soil from the hilltop showed strong evidence of macropore flow, resulting in a rapid leaching of MCPA, while leaching was minimal from the organic-rich hollow soil, since macropore flow was weaker and adsorption stronger. The MACRO model was linked to the inverse modeling program SUFI (Sequential Uncertainty Fitting) to enable calibration of nine key model parameters. Based on calculated model efficiencies, MACRO-SUFI gave generally good predictions of water movement and tracer and pesticide transport, although some errors were attributed to difficulties in simulating the effects of soil moisture on degradation and the timing of water outflows. Even after calibration, significant uncertainties remained for some key parameters controlling macropore flow. Nevertheless, the parameter estimates were significantly different between landscape positions and could also be related to basic soil properties. The posterior uncertainty ranges could probably be reduced with a more exhaustive sampling of the parameter space and improved experimental designs.  相似文献   

12.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

13.
Dynamics of potassium leaching on a hillslope grassland soil   总被引:1,自引:0,他引:1  
There have been only a few studies of potassium (K) losses from grassland systems, and little is known about their dynamics, especially in relation to nitrogen (N) management. A study was performed during the autumn and winter of 1999 and 2000 to understand the effects of N and drainage on the dynamics of K leaching on a hillslope grassland soil in southwestern England. Two N application rates were studied (0 and 280 kg N ha(-1) yr(-1)), both with and without tile drainage. Treatments receiving N also received farmyard manure (FM). Higher total K losses and K concentrations in the leachates were found in the N + FM treatments (150 and 185% higher than in 0 N treatments), which were related to K additions in the FM. Drainage reduced K losses by 35% because of an increase in dry matter production and a reduction in overland and preferential flow. The pattern of change in K concentration in the leachates was associated with preferential flow at the beginning of the drainage season and with matrix flow later in winter, and was best described by a double exponential curve. Rainfall intensity and the autumn application of FM were the main determinants of K losses by leaching. The study provided new insights into the relationships between soil hydrology, rainfall, and K leaching and its implications for grassland systems.  相似文献   

14.
ABSTRACT: A dynamic sediment discharge model was developed and proposed for the simulation of watershed systems. It war developed from an expansion of splash and flow erosion relationships under steady state conditions. It was described as a general erosion model that can be reduced to forms comparable to many conceptual soil erosion and sediment yield models. The model incorporates eight parameters such as rainfall intensities, runoff rates, and previous sediment discharges. The model was tested with two small watersheds with simulation results which were very satisfactory compared to the data.  相似文献   

15.
ABSTRACT: A comprehensive mathematical model (Urban Wastewater Management Model) has been developed to continuously simulate time-varying wastewater flows and qualities in complex metropolitan combined sewerage systems. The model serves three functions: (1) assessment of existing or planned system performance in relation to other wastewater discharges in either a metropolitan or river basin area; (2) determination of the optium operation or automatic control of existing or planned systems during rainstorms; and (3) determination of the most economically feasible combination of design alternatives for improving or expanding existing systems to meet specified performance criteria. The model provides an efficient engineering tool for evaluating and controlling pollutant discharges from combined sewerage systems (including treatment plants) to receiving waters, while considering the time and spacial variations of rainfall and dry-weather flows and qualities as well as economic constraints.  相似文献   

16.
Application of organic chemicals to a newly irrigated sugarcane (Saccharum officinarum L.) area located in the semiarid western part of Reunion Island has prompted local regulatory agencies to determine their potential to contaminate ground water resources. For that purpose, simple indices known as the ground water ubiquity score (Gustafson index, GUS), the retardation factor (RF), the attenuation factor (AF), and the log-transformed attenuation factor (AFT) were employed to assess the potential leaching of five herbicides in two soil types. The herbicides were alachlor [2-chloro-2',6'-diethyl-N-(methoxy-methy) acetanilide], atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine], diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], 2,4-D [(2,4-dichlorophenoxy) acetic-acid], and triclopyr [((3,5,6-trichloro-2-pyridyl)oxy) acetic-acid]. The soil types were Vertic (BV) and Andepts (BA) Inceptisols, which are present throughout the Saint-Gilles study area on Reunion Island. To calculate the indices, herbicide sorption (K(oc)) and dissipation (half-life, DT50) properties were determined from controlled batch experiments. Water fluxes below the root zone were estimated by a capacity-based model driven by a rainfall frequency analysis performed on a 13-yr data series. The results show a lower risk of herbicide leaching than in temperate regions due to the tropical conditions of the study area. Higher temperatures and the presence of highly adsorbent soils may explain smaller DT50 and higher K(oc) values than those reported in literature concerning temperate environments. Based on the RF values, only 2,4-D and triclopyr appear mobile in the BV soil, with all the other herbicides being classified from moderately to very immobile in both soils. The AFT values indicate that the potential leaching of the five herbicides can be considered as unlikely, except during the cyclonic period (about 40 d/yr) when there is a 2.5% probability of recharge rates equal to or higher than 50 mm/d. In that case, atrazine in both soils, 2,4-D and triclopyr in the BV soil, and diuron and alachlor in the BA soil present a high risk of potential contamination of ground water resources.  相似文献   

17.
Incorporating applied phosphorus (P) sources can reduce P runoff losses and is a recommended best management practice. However, in soils with low P retention capacities, leaching can be a major mechanism for off-site P loss, and the P-source application method (surface or incorporation) may not significantly affect the total amount of off-site P loss. We utilized simulated rainfall protocols to investigate effects of P-source characteristics and application methods on the forms and amounts of P losses from six P sources, including five biosolids materials produced and/or marketed in Florida, and one inorganic fertilizer (triple superphosphate). A typical Florida Spodosol (Immokalee fine sand; sandy, siliceous, hyperthermic Arenic Alaquods) was used for the study, to which the P sources were each applied at a rate of 224 kg P ha(-1) (approximately the P rate associated with N-based biosolids applications). The P sources were either surface-applied to the soil or incorporated into the soil to a depth of 5 cm. Amended soils were subjected to three simulated rainfall events, at 1-d intervals. Runoff and leachate were collected after each rainfall event and analyzed for P losses in the form of soluble reactive P (SRP), total dissolved P (TDP), total P (TP), and bioavailable P (BAP) (in runoff only). Cumulative masses (runoff + leachate for the three rainfall events) of P losses from all the P sources were similar, whether the amendments were surface-applied or incorporated into the soil. The solubility of the amendment, rather than application method, largely determines the P loss potential in poorly P-sorbing Florida Spodosols.  相似文献   

18.
Studies were conducted in a closed system recirculating research flume to evaluate the relative effects of high intensity rainfall on von Karman's universal constant and the sediment transport capacity of shallow flow. The tests in this study were conducted at flow depths of 0.3 ft and less with discharges less than 0.5 cfs. The point velocities in the flow were determined with a Pace CD-25 pressure transducer and an inclined manometer connected in parallel to a Pitot-static tube of the standard Prandtl design. Regression analyses were performed on the velocity data to determine the best fit dimensionless velocity curve on semilogarithmic paper. Von Karman's universal constant was then evaluated from the slope of the regression line. Point sediment samples were siphoned from the flow with a stainless steel-pipette sediment sampler. Sediment concentrations were found with a filtering technique. Sediment samples were taken with and without rainfall to evaluate the relative effect of the rainfall on the transport capacity of shallow flow.  相似文献   

19.
Pesticide leaching is an important process with respect to contamination risk to the aquatic environment. The risk of leaching was thus evaluated for glyphosate (N-phosphonomethyl-glycine) and its degradation product AMPA (amino-methylphosphonic acid) under field conditions at one sandy and two loamy sites. Over a 2-yr period, tile-drainage water, ground water, and soil water were sampled and analyzed for pesticides. At a sandy site, the strong soil sorption capacity and lack of macropores seemed to prevent leaching of both glyphosate and AMPA. At one loamy site, which received low precipitation with little intensity, the residence time within the root zone seemed sufficient to prevent leaching of glyphosate, probably due to degradation and sorption. Minor leaching of AMPA was observed at this site, although the concentration was generally low, being on the order of 0.05 microg L(-1) or less. At another loamy site, however, glyphosate and AMPA leached from the root zone into the tile drains (1 m below ground surface [BGS]) in average concentrations exceeding 0.1 microg L(-1), which is the EU threshold value for drinking water. The leaching of glyphosate was mainly governed by pronounced macropore flow occurring within the first months after application. AMPA was frequently detected more than 1.5 yr after application, thus indicating a minor release and limited degradation capacity within the soil. Leaching has so far been confined to the depth of the tile drains, and the pesticides have rarely been detected in monitoring screens located at lower depths. This study suggests that as both glyphosate and AMPA can leach through structured soils, they thereby pose a potential risk to the aquatic environment.  相似文献   

20.
ABSTRACT: Point rainfall intensities for a given return period are often used to formulate design storms for rainfall/runoff models to simulate design floods. These design floods are in turn used to design bridges, culverts, and a variety of drainage and flood control structures. The projected rapid growth in the southwestern United States will require very substantial monetary investments in drainage infrastructure. Accurate estimates of point rainfall intensities are critical to ensure both safe designs while not wasting dollars in overdesign. Rainfall point intensities (accumulated rainfall depth over a specified duration) for 5‐, 15‐, 30‐, and 60‐minute durations for the 2‐, 5‐, 10‐, 25‐, 50‐, and 100‐year return periods were determined for southeast Arizona. Thirty‐five years of rainfall record (1961 to 1995) were used in this study. The records came from 20 stations that were grouped into five sets of four independent stations to extend the rainfall records. The stations are in the USDA‐ARS Walnut Gulch Experimental Watershed (WGEW), which is representative of large portions of the Southwest whose runoff generation is dominated by air‐mass thunderstorms. The 5‐, 15‐, 30‐, and 60‐minute maximum intensities per year followed log‐normal distributions. The mean point rainfall intensities of the five sets of gages are very close (between 0 and 11 percent) to the NOAA values of the 5‐, 15‐, 30‐, and 60‐minute durations for all return periods. Much larger differences between the mean point rainfall intensities for all durations were found when these results were compared to those of a previous study done with a shorter rainfall record (between 14 and 33 percent for the 25‐, 50‐, and 100‐year return‐periods). The difference between the largest and the smallest values of point rainfall intensities recorded by each group, for all durations, usually increases as the return period increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号