首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A Ce_(0.3)TiO_xoxide carrier was synthesized via a sol–gel process,and Ce_(0.3)TiO_xsupported metal(M=Cd,Mn,Fe,W,Mo)oxide catalysts were prepared by the method of incipient-wetness impregnation.The catalysts were characterized by means of X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared(FT–IR)spectroscopy,UV–Visdiffusereflectancespectroscopy(UV–VisDRS),and Temperature-programmed reduction with H_2(H_2-TPR).The catalytic activities for de-NO_(x )were evaluated by the NH_3-SCR reaction.Among all the catalysts tested,the 2 wt.%Cd/Ce_(0.3)TiO_xcatalyst exhibited the best NH_3-SCR performance,with a wide temperature window of 250–450°C for NO conversion above 90%.Moreover,the catalyst showed N_2 selectivity greater than 99%from 200 to 450°C.  相似文献   

2.
TiO_2 nanotube(Ti NT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na_2SO_4 as supporting electrolyte at pH 10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98 × 10~(-2) min~(-1) at pH 10.7 and a faster degradation rate of 6.34 × 10~(-2) min~(-1)was obtained at pH 3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO_2 film electrode fabricated by sol–gel method. Finally, the effect of chloride concentration was also discussed.  相似文献   

3.
ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a = b = 11.176479 Å and c = 10.014323 Å. The band gap of ZnBiYO4 was estimated to be 1.58 eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min− 1 for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO42 − and NO3, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography–mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.  相似文献   

4.
It is important to develop efficient and economic techniques for removing volatile organic compounds (VOCs) in indoor air. Heterogeneous TiO2-based semiconductors are a promising technology for achieving this goal. Anatase/brookite/rutile tricrystalline TiO2 with mesoporous structure was synthesized by a low-temperature hydrothermal route in the presence of HNO3. The obtained samples were characterized by X-ray diffraction and N2 adsorption–desorption isotherm. The photocatalytic activity was evaluated by photocatalytic decomposition of toluene in air under UV light illumination. The results show that tricrystalline TiO2 exhibited higher photocatalytic activity and durability toward gaseous toluene than bicrystalline TiO2, due to the synergistic effects of high surface area, uniform mesoporous structure and junctions among mixed phases. The tricrystalline TiO2 prepared at RHNO3 = 0.8, containing 80.7% anatase, 15.6% brookite and 3.7% rutile, exhibited the highest photocatalytic activity, about 3.85-fold higher than that of P25. The high activity did not significantly degrade even after five reuse cycles. In conclusion, it is expected that our study regarding gas-phase degradation of toluene over tricrystalline TiO2 will enrich the chemistry of the TiO2-based materials as photocatalysts for environmental remediation and stimulate further research interest on this intriguing topic.  相似文献   

5.
The current work deals with ZnO-Ag nanocomposites (in the wide range of x in the Zn1 − xO-Agx chemical composition) synthesized using microwave assisted solution combustion method. The structural, morphological and optical properties of the samples were characterized by XRD (X-ray diffraction), FTIR (Fourier transform infrared spectrometry), SEM (scanning electron microscopy technique), EDX (energy dispersive X-ray spectrum), ICP (inductively coupled plasma technique), TEM (transmission electron microscopy), BET (Brunauer–Emmett–Teller method), UV–Vis (ultraviolet–visible spectrophotometer) and photoluminescence spectrophotometer. The photocatalytic activity of the ZnO-Ag was investigated by photo-degradation of Acid Blue 113 (AB 113) under UV illumination in a semi-batch reactor. This experiment showed that ZnO-Ag has much more excellent photocatalytic properties than ZnO synthesized by the same method. The enhanced photocatalytic activity was due to the decrease in recombination of photogenerated electron-holes. The results showed the improvement of ZnO photocatalytic activity and there is an optimum amount of Ag (3.5 mol%) that needs to be doped with ZnO. The effect of operating parameters such as pH, catalyst dose and dye concentration were investigated. The reaction byproducts were identified by LC/MS (liquid chromatography/mass spectrometry) analysis and a pathway was proposed as well. Kinetic studies indicated that the decolorization process follows the first order kinetics. Also, the degradation percentage of AB 113 was determined using a total organic carbon (TOC) analyzer. Additionally, cost analysis of the process, the mechanism and the role of Ag were discussed.  相似文献   

6.
Three types of TiO2 nanostructures were synthesized via a facile hydrolysis method at 195 °C. Effects of the preparation method and doping with N and F on the crystal structure and photocatalytic performance of TiO2 were investigated. The nanomaterials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller porosimetry, ultraviolet–visible diffuse reflectance spectroscopy and fluorescent emission spectra. Their photo-catalytic activity was examined by the photodegradation of methylene blue in aqueous solution under both ultra-violet and visible light irradiation. The results show that nitrogen and fluorine co-doped anatase TiO2 had the characteristics of a smaller crystalline size, broader light absorption spectrum and lower charge recombination than pure TiO2. Most importantly, more efficient photocatalytic activity under both ultra-violet and visible light was observed. The obtained N–F-TiO2 nanomaterial shows considerable potential for water treatment under sunlight irradiation.  相似文献   

7.
A new method for the preparation of rubber sheet strewn with titanium dioxide particles (TiO2-strewn sheet) is presented. This simple and low cost method is based on the use of TiO2 powder (Degussa P25) being strewn onto the sheet made from rubber latex (60% HA) through a steel sieve. The characteristic of the TiO2-strewn sheet was studied by using scanning electron microscopy/energy dispersive X-ray spectrometer (SEM/EDS) and X-ray diffractometer (XRD) techniques. The photocatalytic activity of TiO2-strewn rubber sheet was evaluated using Indigo Carmine (IC) dye as a model for organic dye pollutant in water. The results showed that the TiO2-strewn sheet could degrade IC dye solution under UV light irradiation. The effects of pH, initial concentration, and the intensity of UV light on the photodegradation were also investigated. Kinetics of the photocatalytic degradation was of the first-order reaction. The used TiO2-strewn sheet can be recovered and reused. The recycling uses did not require any cleaning between successive uses and no decline in the photodegradation efficiency was observed compared with freshly prepared TiO2-strewn sheet.  相似文献   

8.
张钦库  姚秉华  鲁盼  庞波  张亭 《环境科学学报》2015,35(12):3832-3837
以酞酸丁酯(Ti(OC_4H_9)_4)、硝酸铟(In(NO3)3)和聚乙烯吡咯烷酮(PVP-K30)为原料,采用静电纺丝技术制备了In_2TiO_5纳米带.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见漫反射光谱(UV-vis DRS)和氮气吸附-脱附等温线(BET)等技术对样品进行了表征.考察了In_2TiO_5纳米带在光催化降解罗丹明B(RhB)、甲基橙(MO)、亚甲基蓝(MB)和左氧氟沙星(LEV)过程中的应用性能,研究了不同离子型物质、溶液的pH和MB起始浓度对In_2TiO_5纳米带光催化活性的影响.结果表明:In_2TiO_5纳米带具有正交晶系结构,禁带宽度为3.47 eV,比表面积为20.71 m~2·g~(-1),可应用于4种不同离子型物质的光催化降解,发现光催化效果与被降解物质的表面带电性质有关.在紫外光照射下,90 min,对MB的降解率达98.1%,其降解过程服从一级动力学模型.  相似文献   

9.
The solid acid catalyst, N–F codoped TiO2/SiO2 composite oxide was prepared by a sol–gel method using NH4F as nitrogen and fluorine source. The prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–Visible diffuse reflectance spectroscopy (UV–Vis), ammonia adsorption and temperature-programmed desorption (NH3-TPD), in situ Fourier transform infrared spectroscopy (FT-IR) and N2 physical adsorption isotherm. The photocatalytic activity of the catalyst for acrylonitrile degradation was investigated under simulant solar irradiation. The results showed that strong Lewis and Brønsted acid sites appear on the surface of the sample after N–F doping. Systematic investigation showed that the highest photocatalytic activity for acrylonitrile degradation was obtained for samples calcined at 450°C with molar ratio (NH4F to Ti) of 0.8. The degradation ratio of 71.5% was achieved with the prepared catalyst after 6-min irradiation, demonstrating the effectiveness of photocatalytic degradation of acrylonitrile with N–F codoped TiO2/SiO2 composite oxide. The photocatalyst is promising for application under solar light irradiation. Moreover, the intermediates generated after irradiation were verified by gas chromatography–mass spectrometry (GC–MS) analysis and UV–Vis spectroscopy to be simple organic acids with lower toxicity, and the degradation pathway was also proposed for acrylonitrile degradation with the prepared catalyst.  相似文献   

10.
采用水热法和溶胶凝胶法制备了新型FeTiO3/TiO2纳米异质结复合材料,并明确了最优的掺杂比例(0.5%).随后利用X射线衍射能谱(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、扫描电镜(SEM)和透射电镜(TEM)等手段对该复合材料进行表征,证实了其结晶度、吸光度随掺杂量的规律性变化.电镜照片显示,该复合材料具有蓬松多孔的微观结构,且晶格条纹清晰、分散度高,有利于光电子的传导.对苯的降解实验表明,相比于纯TiO2,该催化剂的气相可见光催化能力大幅提高,降解率提升了3倍,达到40%,而CO2生成量提升了5倍,超过300 ppm.同时,电化学测试和电子顺磁共振谱(ESR)等均证实,FeTiO3的窄能带能够提高TiO2的光响应,实现可见光激发;而二者的能带相互匹配,有助于转移光生载流子,实现电子-空穴的高效分离,进而其光生电子和自由基生成能力大幅增强,因此,表现出了较强、较稳定的光催化活性.  相似文献   

11.
Cerium-doped SiO2/TiO2 nanostructured fibers were fabricated by electrospinning technology. The prepared fibers were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Using the fibers as catalysts, photocatalytic degradation of Methylene Blue (MB) aqueous solution was carried out under simulated sunlight. The 0.2% Ce doping proved to be the optimal concentration for the doping of TiO2/SiO2, compared to other Ce-doped molar concentrations. The 0.2% Ce-doped SiO2/TiO2 fibers exhibited higher photocatalytic activity than industrial Degussa P25 and the samples doped with only Ce or SiO2. The reasons for improving the photocatalytic activity were also discussed. Several operational parameters were studied, which showed that the photocatalytic efficiency of MB was influenced by parameters such as the initial dye concentration, the initial pH, inorganic anions, and so on. In addition, the influences of an electron acceptor and a radical scavenger suggested that OH was the dominant photooxidant during the photocatalytic process. The reuse evaluation of the fibers indicated that their photocatalytic activity had good stability.  相似文献   

12.
The immobilization of pre-dispersed TiO2 colloids onto the external surface of the clay mineral montmorillonite (Mt) was accomplished and regulated via a self-assembly method employing the cationic surfactant cetyltrimethylammonium bromide (CTAB). The role of CTAB in the synthesis process was investigated by preparing a series of TiO2-CTAB-Mt composites (TCM) with various CTAB doses. The results indicated that a uniform and continuous TiO2 film was deposited on the external surface of montmorillonite in the composite synthesized with 0.1 wt.% of CTAB, and the TCM nano-composites showed much higher values for specific surface area, average pore size and pore volume than the raw montmorillonite clay. Then, the formed TCM materials were applied in photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous solution. The degradation efficiency reached as high as 94.7%. Based on the degradation intermediates benezoquinone, fumaric acid and oxalic acid identified by LC–MS analysis, a mechanism for the photocatalytic oxidation of 2,4-DCP on TiO2/Mt nano-composites is proposed.  相似文献   

13.
利用高压静电纺丝技术,制得含羧基的导电聚合物纤维(聚偏氟乙烯/苯乙烯-马来酸酐共聚物/纳米石墨).水热条件下在纤维表面原位合成了纳米级的TiO2,再通过水热法在TiO2表面制备了微米级的球形CuO颗粒,得到CuO-TiO2/导电聚合物纤维复合材料.运用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、紫外-可见吸收光谱仪(UV-Vis)和热失重分析(TGA)对复合材料的结构与性能进行表征,并利用氙灯模拟太阳光进行光催化降解次甲基蓝实验.结果发现,CuO-TiO2/导电聚合物纤维复合材料的降解效率高于CuO-TiO2/非导电聚合物纤维、CuO-TiO2粉体和Degussa P25,光催化降解3.5h时,次甲基蓝的残留率为4.7%.  相似文献   

14.
采用溶胶凝胶法制备了BiOCl/TiO2复合催化剂,透射电镜(TEM)照片显示,两种半导体分布均匀、相互连接,形成的异质结可以为电子传导提供有效通道.经过氯化处理的复合材料具备更强的光催化能力,在紫外光条件下对苯的降解率达到90%,是原BiOCl/TiO2的2倍、纯TiO2的10倍.本文利用X射线光电子能谱、红外光谱和电子顺磁共振,对表面氯化的机理进行研究.结果表明,氯元素以Ti—Cl的方式吸附在催化剂表面,在光照条件下光生空穴夺取一个电子,使其生成氯自由基,进而配合超氧、羟基,构成一种新型的三自由基光催化体系,使催化降解能力大幅提升.最后,利用实验方法得到了光生氯自由基的直接证据,并构建了该体系的光催化反应机理.  相似文献   

15.
A series of graphene–TiO2photocatalysts was synthesized by doping TiO2 with graphene oxide via hydrothermal treatment. The photocatalytic capability of the catalysts under ultraviolet irradiation was evaluated in terms of sodium pentachlorophenol(PCP-Na) decomposition and mineralization. The structural and physicochemical properties of these nanocomposites were characterized by X-ray diffraction, N2adsorption–desorption, transmission electron microscopy, scanning electron microscopy, Ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectra, and Fourier-transform infrared spectroscopy. The graphene–TiO2nanocomposites exhibited higher photocatalytic efficiency than commercial P25 for the degradation of PCP-Na, and 63.4% to 82.9% of the total organic carbon was fully mineralized. The improved photocatalytic activity may be attributed to the accelerated interfacial electron-transfer process and the significantly prolonged lifetime of electron-hole pairs imparted by graphene sheets in the nanocomposites. However,excessive graphene and the inhomogeneous aggregation of TiO2 nanoparticles may decrease photodegradation efficiency.  相似文献   

16.
TiO2-石墨烯(Gn)复合材料光催化降解O3研究   总被引:3,自引:2,他引:1  
通过改性Hummer法及溶胶凝胶法,制备出TiO2-石墨烯光催化复合材料.经吸附-光催化活性实验选出光催化活性最高的含C量为1.5%(质量分数)的TiO2-石墨烯复合材料,并在自行设计的模拟大型客机环境的气相光催化反应器中,进行O3光催化降解实验研究.结果表明,TiO2-石墨烯复合光催化材料在较短时间内对O3有较高的降解效率,且其光催化活性显著优于纯TiO2材料.初始O3浓度为(0.150~0.200)×10-6时,复合光催化剂受紫外光激发60 min的光催化降解率为66.12%,初始O3浓度为(0.950~1.000)×10-6时,其光催化降解率约为77%,较低浓度时((0.100~0.150)×10-6),O3去除率也能达到45.45%.此外,通过探讨光催化材料的重复使用性能,表明复合光催化剂重复使用4次以内,其对O3的光催化降解率保持基本稳定.  相似文献   

17.
以Bi(NO_3)_3、Ti(OC_4H_9)_4、In(NO_3)_3和聚乙烯吡咯烷酮(PVP-K30)为原料,采用静电纺丝法和沉淀法相结合,成功制备了Bi掺杂In_2TiO_5(Bi-In_2TiO_5)纳米带.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能量色散谱(EDS)、紫外-可见漫反射光谱(UV-vis DRS)和氮气吸附-脱附等温线(BET)等技术对样品进行表征.结果表明,Bi的掺杂未引入新的杂相,样品均为正交晶系结构,掺杂前后样品的形貌未发生明显变化.适量的Bi掺杂,在In2Ti O5晶格中形成杂质能级,降低了In_2TiO_5的带隙能.当掺杂量为2%时,制备的Bi-In_2TiO_5纳米带的光催化活性最高.在氙灯(150 W)辐照下,150 min,对罗丹明B的降解率达95.8%,且该催化剂对氟喹诺酮类抗生素左氧氟沙星(LEV)也表现出优良的光催化降解性能.  相似文献   

18.
C,N,S-tridoped TiO2 hollow spheres (labeled as C,N,S-THs) were synthesized using carbon spheres as template and C,N,S-tridoped TiO2 nanoparticles as building blocks. The structure and physicochemical properties of the catalysts were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectrum (DRS), N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS) and Photoluminescence emission spectroscopy (PL). The results showed that the hollow spheres had average diameter of about 200 nm and the shell thickness was about 20 nm. The tridoped TiO2 hollow spheres exhibited strong absorption in the visible-light region. C,N,S-tridoped could narrow the band gap of the THs by mixing the orbit O 2p with C 2p, N 2p and S 3p orbits and shift its optical response from ultraviolet (UV) to the visible-light region. PL analysis indicated that the electron-hole recombination rate of TiO2 hollow spheres had been effectively inhibited when doped with C, N and S elements. The photocatalytic activities of the samples were evaluated for the degradation of X-3B (Reactive Brilliant Red dye, C.I. Reactive Red 2) aqueous solution under visible-light (λ 〉 420 nm) irradiation. It was found that the C,N,S-tridoped TiO2 hollow spheres indicated higher photocatalytic activity than commercial P25 and the undoped counterpart photocatalyst.  相似文献   

19.
Photocatalytic degradation of methyl orange using ZnO/TiO2 composites   总被引:1,自引:1,他引:0  
ZnO/TiO2 composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composition and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.  相似文献   

20.
Polypropylene (PP) meltblown fibers were coated with titanium dioxide (TiO2) nanoparticles using layer-by-layer (LbL) deposition technique. The fibers were first modified with 3 layers of poly(4-styrenesulfonic acid) (PSS) and poly(diallyl-dimethylammonium chloride) (PDADMAC) to improve the anchoring of the TiO2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic TiO2 nanoparticles to construct TiO2/PDADMAC bilayer in the LbL fashion. The number of deposited TiO2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust TiO2 loading. The LbL technique showed higher TiO2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue (MB). Results showed that the TiO2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of TiO2 powder dispersed in solution. The deposition of TiO2 3 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4 hr. TiO2-LbL constructions also preserved TiO2 adhesion on substrate surface after 1 cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of TiO2 particles from the substrate outer surface. However, even in the third cycle, the TiO2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8 hr of treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号