首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a = b = 11.176479 Å and c = 10.014323 Å. The band gap of ZnBiYO4 was estimated to be 1.58 eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min− 1 for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO42 − and NO3, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography–mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.  相似文献   

2.
A TiO2 thin film electrode deposited on porous nickel net (TiO2/Ni) was prepared by the sol-gel method, and the surface morphology, crystal structure features and the grain size were characterized by Field emission scan electron microscopy (FESEM) and X-ray diffraction (XRD). The photoelectrocatalytic system was set up using a UV high-pressure mercury lamp as the light source, TiO2 coated on foamed nickel as photo anode, Pt sheet as counter electrode and the pesticide dipterex in synthetic wastewater. Various factors that influence the photoelectrocatalytic decomposition of dipterex pesticide have been studied, such as degradation time, the type of electrolyte, current density, original pH value and different degradation methods. The prepared catalysts were employed to photoelectrocatalytically degrade the pesticide dipterex under UV irradiation, comparing the results with photocatalytic degradation and electrochemical oxidation. The results indicated that under the optimal conditions of 0.02 mol/L NaCl as the supporting electrolyte, current density = 2.5 mA/cm2, pH 6.0 and dipterex pesticide 40 mg/L, and reaction time 2 hr, dipterex chemical oxygen demand (COD) removal rate and organophosphorous conversion of up to 82.6% and 83.5% were achieved, respectively. The method of photoelectrocatalytic degradation is more efficient than photocatalysis and electrochemical oxidation. The possible roles of the electrolytes on the reactions and probable mechanisms were also discussed.  相似文献   

3.
We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials, which were formed by layered deposition of multiple anatase TiO2 nanosheets. The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet, including crystal steps and edges, thereby fixing the Au–TiO2 perimeter interface. Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au–TiO2 interface. The doped Au induced the formation of oxygen vacancies in the Au–TiO2 interface. Such vacancies are essential for generating active oxygen species (*O) on the TiO2 surface and Ti3 + ions in bulk TiO2. These ions can then form Ti3 +–O–Ti4 + species, which are known to enhance the catalytic activity of formaldehyde (HCHO) oxidation. These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials.  相似文献   

4.
The present study aimed to investigate the potential ammonia (NH3) emission from flag leaves of paddy rice (Oryza sativa L. cv. Koshihikari). The study was conducted at a paddy field in central Japan that was designed as a free-air CO2 enrichment (FACE) facility for paddy rice. A dynamic chamber method was used to measure the potential NH3 emissions. The air concentrations of NH3 at two heights (2 and 6 m from the ground surface) were measured using a filter-pack method, and the exchange fluxes of NH3 of the whole paddy field were calculated using a gradient method. The flag leaves showed potential NH3 emissions of 25-38 ng N cm−2 h−1 in the daytime from the heading to the maturity stages, and they showed potentials of approximately 22 ng N cm−2 h−1, even in the nighttime, at the heading and mid-ripening stages. The exchange fluxes of NH3 of the whole paddy field in the daytime were net emissions of 0.9-3.9 g N ha−1 h−1 whereas the exchange fluxes of NH3 in the nighttime were approximately zero.  相似文献   

5.
SiO2纳米颗粒内嵌强化介孔TiO2单晶光催化降解盐酸四环素   总被引:1,自引:0,他引:1  
吸附性能和光生载流子的分离效率是决定光催化降解抗生素的主要因素.为提高介孔TiO_2单晶(MSCs)的吸附性能和光生载流子的分离效率,在MSCs内部构建SiO_2纳米颗粒吸附结构.同时,利用表面光电压谱、氮气等温吸附-脱附、X射线衍射等研究其结构特性.最后,以盐酸四环素为抗生素代表,通过控制SiO_2纳米颗粒比表面积,考察SiO_2对复合材料吸附及光催化性能的影响.结果表明,SiO_2纳米颗粒与TiO_2单晶复合显著提高了材料的吸附性能,表面保护蚀刻进一步提升了材料的比表面积.实验条件下,高比表面积SiO_2-TiO_2单晶复合材料(KSiO_2@TiO_2)对盐酸四环素的平衡吸附量、降解效率、降解速率常数和矿化率分别达到了0.96 mg·g-1、90.2%、0.0079 min-1、54.4%,分别是MSCs的4.4、1.5、2.6和3.1倍.副产物分析表明,SiO_2复合介孔单晶材料更易将盐酸四环素降解为小分子物质.  相似文献   

6.
李蒋  王雁  张秀芳  赵旭 《环境科学》2018,39(8):3713-3718
采用静电纺丝法制备了Co_3O_4/BiVO_4复合薄膜电极,并以之为光阳极,在过一硫酸盐(PMS)辅助作用下开展了光电催化降解双酚A研究.结果表明,PMS在可见光下可显著强化Co_3O_4/BiVO_4复合阳极光电催化降解双酚A,在0.25 V外加偏压以及可见光照射下,当加入2 mmol·L-1PMS时,双酚A在2 h内的降解效率为96%.降解动力学常数为0.471 4 min-1.系统研究了PMS初始浓度、外加偏压对双酚A降解性能的影响.结果发现,双酚A在较低的PMS投加量和较低的外加偏压(0.25 V)下即可有效降解.采用电子自旋共振波谱仪鉴定体系的主要活性自由基为SO·-4和·OH.并进一步通过淬灭实验结果证明空穴、SO·-4和·OH起主要氧化作用.光电反应后的体系中未检测到金属离子溶出,可避免二次污染.  相似文献   

7.
Highly active mesoporous TiO_2 of about 6 nm crystal size and 280.7 m~2/g specific surface areas has been successfully synthesized via controlled hydrolysis of titanium butoxide at acidic medium. It was characterized by means of XRD(X-ray diffraction), SEM(scanning electron microscopy), TEM(transmission electron microscopy), FT-IR(Fourier transform infrared spectroscopy), TGA(thermogravimetric analysis), DSC(differential scanning calorimetry) and BET(Brunauer–Emmett–Teller) surface area. The degradation of dichlorophenol-indophenol(DCPIP) under ultraviolet(UV) light was studied to evaluate the photocatalytic activity of samples. The effects of different parameters and kinetics were investigated. Accordingly, a complete degradation of DCPIP dye was achieved by applying the optimal operational conditions of 1 g/L of catalyst, 10 mg/L of DCPIP, pH of 3 and the temperature at 25 ± 3°C after 3 min under UV irradiation. Meanwhile, the Langmuir–Hinshelwood kinetic model described the variations in pure photocatalytic branch in consistent with a first order power law model.The results proved that the prepared TiO_2 nanoparticle has a photocatalytic activity significantly better than Degussa P-25.  相似文献   

8.
A field lysimeter/mini plot experiment was established in a silt loam soil near Lincoln, New Zealand, to investigate the effectiveness of urea fertilizer in fine particle application (FPA), with or without the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT - “Agrotain”), in decreasing nitrogen (N) losses and improving N uptake efficiency. The five treatments were: control (no N) and 15N-labelled urea, with or without NBPT, applied to lysimeters or mini plots (unlabelled urea), either in granular form to the soil surface or in FPA form (through a spray) at a rate equivalent to 100 kg N ha−1. Gaseous emissions of ammonia (NH3) and nitrous oxide (N2O), nitrate (NO3) leaching, herbage dry-matter (DM) production, N-response efficiency, total N uptake and total recovery of applied 15N in the plant and soil varied with urea application method and with addition of NBPT. Urea with NBPT, applied in granular or FPA form, was more effective than in application without NBPT: N2O emissions were reduced by 7-12%, NH3 emissions by 65-69% and NO3 leaching losses by 36-55% compared with granular urea. Urea alone and with NBPT, applied in FPA form increased herbage DM production by 27% and 38%, respectively. The N response efficiency increased from 10 kg DM kg−1 of applied N with granular urea to 19 kg DM kg−1 with FPA urea and to 23 kg DM kg−1 with FPA urea plus NBPT. Urea applied in FPA form resulted in significantly (P < 0.05) higher 15N recovery in the shoots compared with granular treatments and this was improved further when urea in FPA form was applied with NBPT. These results suggest that applying urea with NBPT in FPA form has potential as a management tool in mitigating N losses, improving N-response efficiency and increasing herbage DM production in intensive grassland systems.  相似文献   

9.
TiO2-石墨烯(Gn)复合材料光催化降解O3研究   总被引:3,自引:2,他引:1  
通过改性Hummer法及溶胶凝胶法,制备出TiO2-石墨烯光催化复合材料.经吸附-光催化活性实验选出光催化活性最高的含C量为1.5%(质量分数)的TiO2-石墨烯复合材料,并在自行设计的模拟大型客机环境的气相光催化反应器中,进行O3光催化降解实验研究.结果表明,TiO2-石墨烯复合光催化材料在较短时间内对O3有较高的降解效率,且其光催化活性显著优于纯TiO2材料.初始O3浓度为(0.150~0.200)×10-6时,复合光催化剂受紫外光激发60 min的光催化降解率为66.12%,初始O3浓度为(0.950~1.000)×10-6时,其光催化降解率约为77%,较低浓度时((0.100~0.150)×10-6),O3去除率也能达到45.45%.此外,通过探讨光催化材料的重复使用性能,表明复合光催化剂重复使用4次以内,其对O3的光催化降解率保持基本稳定.  相似文献   

10.
In this study,the cytotoxicity of two different crystal phases of TiO2 nanoparticles,with surface modification by humic acid(HA),to Escherichia coli,was assessed.The physicochemical properties of TiO2 nanoparticles were thoroughly characterized.Three different initial concentrations,namely 50,100,and 200 ppm,of HA were used for synthesis of HA coated TiO2 nanoparticles(denoted as A/RHA50,A/RHA100,and A/RHA200,respectively).Results indicate that rutile(LC50(concentration that causes 50%mortality compared the control group)=6.5)was more toxic than anatase(LC50=278.8)under simulated sunlight(SSL)irradiation,possibly due to an extremely narrow band gap.It is noted that HA coating increased the toxicity of anatase,but decreased that of rutile.Additionally,AHA50 and RHA50had the biggest differences compared to uncoated anatase and rutile with LC50of 201.9 and21.6,respectively.We then investigated the formation of reactive oxygen species(ROS)by TiO2 nanoparticles in terms of hydroxyl radicals(OH)and superoxide anions(O2-).Data suggested that O2- was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation.We also observed that HA coating decreased the generation of OH and O2- on rutile,but increased O2- formation on anatase.Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E.coli more than anatase.  相似文献   

11.
沙爽  周少奇  张小娜  周晓 《环境科学》2012,33(4):1267-1271
以溶胶-凝胶法制备的Pr-N共掺杂TiO2催化剂为电极,在光电催化反应器中,研究了光电催化降解孔雀石绿的动力学过程.结果表明,孔雀石绿氧化降解速率与溶液的初始浓度、pH、外加电压及反应的温度有关,在初始浓度为10~30 mg.L-1、pH为3~8、电压1~5 V、温度为298~338 K的实验范围内,反应的氧化降解符合一级反应动力学模型且模型值与实验值吻合良好.模型中反应的初始反应活化能Ea为11.99 kJ.mol-1,说明反应较易进行;pH的反应级数1.634 7,远远高于电压的级数0.850 2及初始浓度的级数0.123 8,表明通过控制pH可有效地提高光电催化的氧化降解速率.  相似文献   

12.
13.
Knowledge of the effective radiation spectrum irradiating substrates from microwave powered electrodeless discharge lamps(MEDLs), and the active species that directly oxidize substrates in the photolytic process, is fragmentary and unclear. In this work, we conducted a comparative study using MEDLs made with quartz envelopes(MEDL-quartz) and with borosilicate Pyrex envelopes(MEDL-Pyrex) targeting the degradation of Rhodamine B(Rh B)via radical-extinguishing tests. We found that UVC/UVB radiation is essential to generate·OH and H2O2 in the MEDL-quartz system. The degradation of Rh B mostly originates from·OH species, which account for a contribution of 53.8%, while the remaining contribution is attributed to oxidation by H2O2 and direct photolysis. This degradation is influenced by several parameters. Acidic and neutral p Hs, but not extreme alkaline p H, benefit the degradation. To ensure a high intensity of UVC/UVB, the optimum ratio of the MEDL volume to the aqueous solution volume(VL/VS) is 0.4. Concentrations of 0.15–0.20 mmol/L of Rh B are suitable to obtain an effective quantum absorbance in the MEDL-quartz system,showing a high decomposition rate of 5.6 × 10-3(mmol/L)min-1. Moreover, two other substrates, Reactive Brilliant Red X-3B and Safranine T, were tested and found to be efficiently degraded in the MEDL-quartz system.  相似文献   

14.
Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe0 was investigated. Organic acids improved dye reduction by augmenting Fe0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its ‘salting out’ effect on the bulk solution and by Cl anion-mediated pitting corrosion of iron surface. (NH4)2SO4 induced ‘salting out’ effect accompanied by enhanced iron corrosion by SO42 − anion and buffering effect of NH4+ improved the reduction rates. However, at 2 g/L (NH4)2SO4 concentration, complexating of SO42 − with iron oxides decreased Fe0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and ‘salting in’ effect in solution, and due to it masking the Fe0 surface. Decolouration obeyed biphasic reduction kinetics (R2 > 0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH 2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH 2.  相似文献   

15.
Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100 mg/L of indole within 24 hr. It still harbored relatively high indole degradation capacity within pH 4–9 and temperature 25°C–35°C. Experiments also showed that some heavy metals such as Mn2 +, Pb2 + and Co2 + did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography–mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater.  相似文献   

16.
为获得高效催化活性的光催化材料,研究不同煅烧氛围对材料在可见光下催化性能的影响,以膨胀珍珠岩(EP)为载体,采用溶胶-凝胶法,在不同煅烧氛围(O2和/或NH3)下制备Fe2O3/TiO2负载EP的光催化复合材料〔Fe2O3-TEP(O2)、Fe2O3-TEP(NH3)、Fe2O3-TEP(O2,NH3)、Fe2O3-TEP(NH3,O2)〕,采用EDS(X-射线色散能谱)、BET(比表面积及孔径分析)、XRD(X射线衍射)、SEM(扫描电子显微镜)、XPS(X射线光电子能谱)等对复合材料进行表征,并研究了其在可见光下对罗丹明B的光催化降解效果.结果表明:①复合材料成功负载了Ti、Fe元素,负载的TiO2以锐钛矿型存在,Fe2O3的掺杂增强了TiO2对可见光的响应能力;②不同的煅烧氛围明显影响复合材料的晶粒尺寸、比表面积和光催化性能,其中,Fe2O3-TEP(O2,NH3)的光催化性能最好,4 h后罗丹明B降解率达到87.59%,Fe2O3-TEP(NH3,O2)、Fe2O3-TEP(O2)和Fe2O3-TEP(NH3)4 h后对罗丹明B的降解率则分别为65.02%、62.48%和47.48%;③在试验条件下,复合材料的光催化反应符合一阶反应动力学方程,Fe2O3-TEP(O2,NH3)、Fe2O3-TEP(NH3,O2)、Fe2O3-TEP(O2)和Fe2O3-TEP(NH3)相应的降解速率常数分别为0.008 3、0.004 3、0.004 3和0.002 7 min-1.研究显示,通过溶胶-凝胶法所制备的复合材料(Fe2O3-TEP)经煅烧后所得矿相均一;Fe2O3掺杂TiO2可形成Ti—O—Fe键,减小TiO2固有的禁带宽度;复合材料光催化性能也受到煅烧氛围的影响,先O2后NH3煅烧条件下所得材料的光催化性能最佳.   相似文献   

17.
钯掺TiO2光催化降解全氟辛酸   总被引:2,自引:2,他引:0  
全氟辛酸(perfluorooctanoic acid,PFOA)以其分布广泛性、生物蓄积性、生物毒性强而成为全球关注的一种新型持久性有机污染物.采用化学还原法制备钯掺二氧化钛(Pd-Ti O2)催化剂,利用XRD、FESEM、UV-vis DRS对催化剂进行表征,并考察其在365 nm紫外光照射下对PFOA的光催化降解效果.结果表明,化学还原的制备方法使Ti O2粒径减小、比表面积增大且对紫外光的吸收性能增大,但并不引起PFOA光催化效果的改变.而Pd掺杂后大大增强了PFOA的降解效果,反应7 h后溶液中氟离子浓度为6.62 mg·L-1,是Ti O2(P25)的7.3倍.投加俘获剂与通入氮气的实验证明,在PFOA的降解过程中·OH起重要作用,氧气的存在可促进PFOA的降解.采用UPLC-QTOF-MS对产物进行鉴定分析,PFOA的可能降解过程是经h+氧化后发生脱羧基反应,产生的全氟烷烃自由基(·CnF2n+1)被·OH氧化,脱氟生成短链全氟羧酸.Pd能作为电子(e-)捕获剂、加速e-向O2等电子受体的转移,从而缓解e-累积,提高对PFOA的降解效果.  相似文献   

18.
Atmospheric CO2 concentration (Ca) is rising, predicted to cause global warming, and alter precipitation patterns. During 1994, spring barley (Hordeum vulgare L. cv. Alexis) was grown in a strip-split-plot experimental design to determine the effects that the main plot Ca treatments [A: Ambient at 370 μmol (CO2) mol−1; E: Enriched with free-air CO2 enrichment (FACE) at ∼550 μmol (CO2) mol−1] had on several gas exchange properties of fully expanded sunlit primary leaves. The interacting strip-split-plot irrigation treatments were Dry or Wet [50% (D) or 100% (W) replacement of potential evapotranspiration] at ample nitrogen (261 kg N ha−1) and phosphorous (29 kg P ha−1) fertility. Elevated Ca facilitated drought avoidance by reducing stomatal conductance (gs) by 34% that conserved water and enabled stomata to remain open for a longer period into a drought. This resulted in a 28% reduction in drought-induced midafternoon depression in net assimilation rate (A). Elevated Ca increased A by 37% under Dry and 23% under Wet. Any reduction in A under Wet conditions occurred because of nonstomatal limitations, whereas under Dry it occurred because of stomatal limitations. Elevated Ca increased the diurnal integral of A (A′) that resulted in an increase in the seasonal-long integral of A′ (A″) for barley leaves by 12% (P = 0.14) under both Dry and Wet - 650, 730, 905 and 1020 ± 65 g (C) m−2 y−1 for AD, ED, AW and EW treatments, respectively. Elevated Ca increased season-long average dry weight (DWS; crown, shoots) by 14% (P = 0.02), whereas deficit irrigation reduced DWS by 7% (P = 0.06), although these values may have been affected by a short but severe pea aphid [Acyrthosiphon pisum (Harris)] infestation. Hence, an elevated-Ca-based improvement in gas exchange properties enhanced growth of a barley crop.  相似文献   

19.
Knowing underlying practices for current greenhouse gas (GHG) emissions is a necessary precursor for developing best management practices aimed at reducing N2O emissions. The effect of no-till management on nitrous oxide (N2O), a potent greenhouse gas, remains largely unclear, especially in perennial agroecosystems. The objective of this study was to compare direct N2O emissions associated with management events in a cover-cropped Mediterranean vineyard under conventional tillage (CT) versus no-till (NT) practices. This study took place in a wine grape vineyard over one full growing season, with a focus on the seven to ten days following vineyard floor management and precipitation events. Cumulative N2O emissions in the NT system were greater under both the vine and the tractor row compared to CT, with 0.15 ± 0.026 kg N2O-N ha−1 growing season−1 emitted from the CT vine compared to 0.22 ± 0.032 kg N2O-N ha−1 growing season−1 emitted from the NT vine and 0.13 ± 0.048 kg N2O-N ha−1growing season−1 emitted from the CT row compared to 0.19 ± 0.019 kg N2O-N ha−1 growing season−1 from the NT row. Yet these variations were not significant, indicating no differences in seasonal N2O emissions following conversion from CT to NT compared to long-term CT management. Individual management events such as fertilization and cover cropping, however, had a major impact on seasonal emissions, indicating that management events play a critical role in N2O emission patterns.  相似文献   

20.
王龙  汪家权  吴康 《环境科学学报》2014,34(11):2798-2805
本实验采用钛网作为基体,利用电沉积方法制备了纯PbO2电极和Bi-PbO2电极,通过SEM、XRD、XPS对电极的表面形态进行了表征,利用循环伏安法对Bi-PbO2电极电化学特性进行了研究.同时,以氨氮模拟废水作为研究对象,考察了Bi-PbO2电极的电催化活性,探讨了氨氮电化学氧化降解机理.结果表明,Bi-PbO2电极的形态表征、电催化活性明显高于纯PbO2电极,氨氮的去除效率随电流密度的增加而提高,碱性条件下氨氮的去除效果明显好于酸性条件,适量浓度的Cl-的引入在碱性条件下提高了氨氮的去除效果.当氨氮初始浓度为50 mg·L-1、电流密度为40 mA·cm-2、pH=12、Cl-浓度为600 mg·L-1时,电解120 min后,氨氮100%去除.氨氮的降解机理为:体系中无添加氯离子,酸性条件下氨氮主要是通过间接氧化去除,碱性条件下通过直接电氧化和间接氧化共同完成;体系中添加氯离子,氨氮的去除主要是通过溶液中生成的有效氯间接氧化去除.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号