首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total concentrations of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sr, Ti, V and Zn in the epiphytic lichen Parmelia sulcata and superficial soils from 60 remote sampling sites in Tuscany (central Italy) were determined to evaluate the contribution of soil to the elemental composition of the lichen. The results showed that in the Mediterranean environment, the trace element content of unwashed lichen samples is greatly affected by soil contamination. However, despite the strong correlations between the concentrations of lithogene elements such as Al, Fe and Ti in P. sulcata, lichen levels of these elements were not at all linearly correlated with their concentrations in the soil, suggesting that dust contamination is highly variable and probably dependent on local site characteristics. All methods evaluated to minimize soil contamination indicated Cu, Pb and Zn as elements of atmospheric origin. However, while levels of Pb were similar to those reported for background areas, moderate pollution by Cu and Zn, probably from fertilizers used in agriculture, was revealed. For elements such as Cd and Mo, identified as atmophile, some uncertainty exists due to the fact that they are essential for lichen metabolism and accumulate intracellularly in lichens; they may therefore occur in soluble form in the lichen thallus.  相似文献   

2.
There is a growing concern over the potential accumulation of heavy metals in soils owing to rapid industrial and urban development and increasing reliance on agrochemicals in the last several decades. These metals can infiltrate through the soil thereby causing groundwater pollution. Surface soil samples (5 to 15 cm) collected from southeastern part of Ranga Reddy district were analyzed for 14 heavy metals (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, V, Y, Zn and Zr) using Philips PW 2440 X-ray fluorescence spectrometer. Results for heavy and trace elements are reported for the first time in soils for this region. The contamination of the soils was assessed on the basis of enrichment factor (EF), geoaccumulation index (I (geo)), contamination factor and degree of contamination. The results reveal that variations in heavy element concentrations in the soil analyzed have both geogenic and anthropogenic contribution, due to the long period of constant human activities in the study area. The concentration of the metals Ba, Rb, Sr, V, Y and Zr were interpreted to be mainly inherited from parent materials (rocks) and the As, Co, Cr, Cu, Mo, Ni, Pb and Zn concentrations show contribution from geogenic and anthropogenic sources. The major element variations in soils are determined by the composition of the parent material predominantly involving granites.  相似文献   

3.
The aim of this paper is to evaluate total and bioavailable concentration of heavy metals in agricultural soils in order to estimate their distribution, to identify the possible correlations among toxic elements and the pollution sources, to distinguish the samples in relation to sampling site or to sampling depth, and to evaluate the available fraction providing information about the risky for plants. In particular, we reinvestigated total concentrations of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, and Zn and available concentrations of As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, and Zn in soil from Apulia (Southern Italy). Analytical results showed that total concentrations, for all soils, are in the range permitted by regulations in force in Italy, but some soils evidence slight enrichment of Cd, Cr, Cu, Pb, and Zn. All the heavy metals in the available fraction were below the detection limits of the analytical techniques used except Cu, Ni, Pb, and Zn.  相似文献   

4.
Present study was conducted in rapidly growing city Islamabad, and surface soils were collected from three major land cover types viz., built-up, drain side, and green areas. A total of seven physicochemical parameters and 11 metals were determined in surface soils. Factor analysis based on principal component analysis explained total variance of 68.0%, 64.5%, and 60.2% of three land cover types and showed high loadings for major elements (Mg and K) in built-up and green area and Fe in drain side. Top soil pollution index was carried out by using geo-accumulation index and metal pollution index (MPI6). Concentration of major elements (Ca, Mg, Na, K) in surface soils is derived by parent material, whereas concentration of Fe, Ni, Pb, and Zn were mainly related with anthropogenic sources. Geostatistical methods such as kirging identified hotspot areas of metal contamination by Pb, Ni, and Zn in built-up areas influenced mainly by vehicular emissions and waste disposal. The results stresses that land clearing should be avoided to reduce contamination and management of urban soils.  相似文献   

5.
Heavy Metal Pollution of Surface Soil in the Thrace Region, Turkey   总被引:1,自引:0,他引:1  
Abstact Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 35 elements in the soil samples. Concentrations of As, Cd, Co, Cu, Mn, Ni, Pb and Zn were determined using AAS and GF AAS, and ENAA was used for the remaining 27 elements. Results for As, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, V and Zn are reported for the first time for soils from this region. The results show that concentrations of most elements were little affected by the industrial and other anthropogenic activities performed in region. Except for distinctly higher levels of Pb, Cu, Cd and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb and Zn were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology  相似文献   

6.
Ust-Kamenogorsk is one of the largest cities and industrial centers in Kazakhstan. Non-ferrous metallurgy (Zn–Pb smelter) has acted as a predominating industrial branch in the city since late 1940s. The industrial plants are situated directly adjacent to the residential area of the city which creates grievous ecotoxicological hazard. In the present paper, we aimed at assessing the trace metal pollution of top soils in Ust-Kamenogorsk and its potential threats to the local population. The top soils were sampled at 10 sites throughout the city center. We determined the physical and chemical properties of soils as well as the contents of Cd, Cu, Pb, and Zn. In addition, the soil samples were subjected to a five-step sequential extraction to ascertain the fractionation of trace metals. On this basis, we calculated the geoaccumulation index (Igeo) and pollution load index (PLI) and assessed bioavailability of the elements. From our data, it emerged that the soils displayed a strong polymetallic pollution. PLI was as high as 33.4. Throughout the city, the trace metal contents exceeded the geochemical background and allowable values for residential, recreational, and institutional areas. The Igeo obtained were 3.7–6.5 for Cd, 1.5–4.7 for Cu, 2.8–5.7 for Pb, and 2.6–4.6 for Zn. The soils in Ust-Kamenogorsk displayed extremely high contamination with Cd, moderate to strong contamination with Pb and Zn, and low to moderate contamination with Cu. Cd and Pb were found to be the most bioavailable elements. The mobility of trace metals in the soils changed in the order Cd > Pb > Zn > Cu.  相似文献   

7.
从新疆某地典型城-郊-乡梯度带采集了77个表层(0~20 cm)土壤样品,基于GIS技术与多元统计分析方法,研究各梯度带表层土壤中Hg、As、V、Co、Ni、Cu、Zn、Cd、Pb和Sb等10种微量元素的空间分布特征与主要来源。结果表明:Hg元素在城区、郊区和乡村表层土壤中的平均含量均超出研究区土壤背景值,As元素在城区和郊区表层土壤中的平均含量超出背景值,Zn和Pb元素在城区表层土壤中的平均含量超出背景值,其余元素在3个梯度带表层土壤中的平均含量均低于相应的背景值。研究区表层土壤中,V、Co、Ni、Zn、Cd、Pb和Sb等7种元素的空间分布格局基本相似,均呈现沿城市化梯度带分布的地带性格局;As、Cu和Hg等3种元素的空间分布呈现岛状格局。来源分析结果表明,各梯度带表层土壤中的微量元素的来源各不相同。  相似文献   

8.
The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5–637.9 for As, 6.5–103.9 for Cd, 12.2–21.9 for Co, 90.6–516.0 for Cr, 258.1–1,791.5 for Cu, 2.6–19.0 for Hg, 70.5–174.5 for Ni, 126.9–1,405.8 for Pb, 3.7–260.0 for Sb, 38.4–100.4 for V, and 503–4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.  相似文献   

9.
The surface water qualities of Hussainsagar, an eutrophic urban lake in the midst of twin cities of Hyderabad and Secunderabad (India) receiving large quantities of external inputs—both untreated municipal sewage containing industrial effluents, and treated sewage, a large number of annually immersed idols of God and Goddess, and intense boating activities were assessed in relation to the concentration of elements including heavy metals of the water along the necklace road of the lake. Elemental analyses of water using ICP-MS revealed 26 elements including heavy metals—As, Cd, Cr, Ni, Pb, Cu, Fe, Mn, Se, Ba, Zn, Mo, V, Co, Ag, Sr, Rb, Mg, K, Ca, Al, Si, Sb, Na, Li, and B, in the surface water of the lake. Of these, the first 15 elements were found in elevated concentrations in the water at the outfall point of the untreated municipal sewage (site 3), which was the main dominating source of contamination of the lake water while Cu and Sb were recorded in higher concentrations at the outfall of treated effluent from Sewage Treatment Plant, and three elements (Ba, Si, and B) were in higher concentration at the sites of outfall of sewage flowing from an oxygenated pond (site 4), Ca, Zn, and Sr, at the site immersed with idols (site 1), and Pb, Ag, and Al at the center of the lake (site 5) with intense boating activities. Concentrations of most of these elements exceeded the maximum permissible limits of national (Indian Council Medical Research) standards for drinking water. The concentrations of most of the elemental contaminants showed significant positive correlations between them.  相似文献   

10.
Marine sediments of the Gulf of Mannar (GoM), India are contaminated by potential toxic elements (PTEs) due to anthropogenic activities posing a risk to the existing fragile coral ecosystem and human health. The current study aimed to assess the distribution of PTEs (arsenic—As; cobalt—Co; copper—Cu, molybdenum—Mo; lead—Pb; and zinc—Zn) in marine sediments of different grain size fractions, viz., medium sand (710 μm), fine sand (250 μm), and clay (<63 μm) among the different coastal regions of Pamban, Palk Bay, and Rameswaram coasts of GoM, using grain size as one of the key factor controlling their concentrations. The concentrations of PTEs were measured in the different size fractions of sediment using inductively coupled plasma mass spectrophotometer. The order of accumulation of all PTEs in the three fractions was ranked as Zn > Cu > Pb > As > Co > Mo and in the three locations as Rameswaram > Palk Bay > Pamban. The concentration of PTEs in Palk Bay and Rameswaram coast was significantly different (P?<?0.05), when compared to Pamban coast. Measured geoaccumulation index (I geo) and contamination factor (CF) indicated significant enrichment of Co and Pb from Rameswaram coast when compared to other two coasts. Although the concentration of Co was low but the measured I geo and CF values indicated significant enrichment of this PTE in Rameswaram coast. The increased input of PTEs in the coastal regions of GoM signifies the need to monitor the coast regularly using suitable monitoring tools such as sediments to prevent further damage to the marine ecosystem.  相似文献   

11.
Fractionation and elemental association of Zn, Cd, and Pb in soils near Zn mining areas were studied using a continuous-flow sequential extraction approach. The recently developed sequential extraction procedure not only gave fractional distribution data for evaluation of the mobility or potential environmental impact of the metals, but also the extraction profiles (extractograms) which were used for study of elemental association. In addition, the elemental atomic ratio plot extractogram can be used to demonstrate the degree of anthropogenic contamination. Seventy-nine soil samples were collected in the vicinity of a Zn mine and were fractionated into 4 phases i.e. exchangeable (F1), acid soluble (F2), reducible (F3) and oxidizable (F4) phases. Most samples were contaminated with Zn, Cd and Pb. The reducible phase is the most abundant fraction for Zn and Pb (>50%) while Cd is concentrated in the first 3 extraction steps. The distribution patterns of Cd were obviously affected by soil pH. 55% of Cd appears predominantly in the F1 fraction for acidic soils while in neutral and alkaline soils, it was mostly (70%) found in the F2 + F3 fractions. The extractograms obtained from the continuous-flow extraction system revealed close association between Zn, Cd, Pb and Fe in the acid soluble phase, Cd-Pb and Zn-Fe in the reducible phase for contaminated soils. A correlation study of the 3 metals using a correlation coefficient was also performed to compare the results with the elemental association revealed by the extractograms. Atomic ratio plot extractograms of Zn/Fe, Cd/Fe and Pb/Fe in the reducible phase, where contaminated metals are predominant, can be used to evaluate the degree of anthropogenic contamination. From the elemental atomic ratio plot, it is obvious that the contaminants Cd and Pb are mostly adsorbed on the surface of Fe oxides. Zn, which is present in an approximately 1 ratio 1 ratio with Fe in contaminated soils, does not show a similar trend to that found for Cd and Pb.  相似文献   

12.
To investigate the distribution and source pathways of environmentally critical trace metals in coastal Antarctica, trace elemental concentrations were analyzed in 36 surface snow samples along a coast to inland transect in the Ingrid Christensen Coast of East Antarctica. The samples were collected and analyzed using the clean protocols and an inductively coupled plasma mass spectrometer. Within the coastal ice-free and ice-covered region, marine elements (Na, Ca, Mg, K, Li, and Sr) revealed enhanced concentrations as compared with inland sites. Along with the sea-salt elements, the coastal ice-free sites were also characterized by enhanced concentrations of Al, Fe, Mn, V, Cr, and Zn. The crustal enrichment factors (Efc) confirm a dominant crustal source for Fe and Al and a significant source for Cr, V, Co, and Ba, which clearly reflects the influence of petrological characteristics of the Larsemann Hills on the trace elemental composition of surface snow. The Efc of elements revealed that Zn, Cu, Mo, Cd, As, Se, Sb, and Pb are highly enriched compared with the known natural sources, suggesting an anthropogenic origin for these elements. Evaluation of the contributions to surface snow from the different sources suggests that while contribution from natural sources is relatively significant, local contamination from the increasing research station and logistic activities within the proximity of study area cannot be ignored.  相似文献   

13.
广西一个典型矿业镇环境中重金属污染分析   总被引:2,自引:0,他引:2  
广西河池市是我国重要的有色金属基地.以该市一个典型的矿业镇作为研究对象,采集了该镇周围23个旱地土壤样品,并在镇里布设两个大气采样点采集了可吸入颗粒物(PM10)样品,运用ICP-MS分析了样品中20种金属元素的含量,采用地积指数法判定旱地土壤和可吸入颗粒物中污染元素及来源.结果表明,这些与人们生活密切的环境介质(旱地土,可吸入颗粒物)均受到了多种重金属元素的复合污染,其共同的污染元素有Cd、As、Sb、Pb、Xn、Cu,而其中致癌元素Cd和As污染最为突出.大气可吸入颗粒物与旱地土壤中各污染元素的污染强度排序相同,均为Cd>As>Sb>Pb>Zn>Cu.经过现场调查和识别,污染源主要来自当地开放性运矿产生的扬尘所致.因此加强该地区矿石运输管理是保护该地区耕地和人群健康的需要.  相似文献   

14.
The Trans-Amazonian Highway (TAH) is located in the northern region of Brazil, comprising a border region where agricultural, mining, and logging activities are the main activities responsible for fostering economic development, in addition to large hydroelectric plants. Such activities lead to environmental contamination by potentially toxic elements (PTEs). Environmental monitoring is only possible through the determination of element contents under natural conditions. Many extraction methods have been proposed to determine PTEs’ bioavailability in the soil; however, there is no consensus about which extractor is most suitable. In this study, we determined the contents of PTEs in soils in the surroundings of TAH after mineral extraction with diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), Mehlich I, and Mehlich III solutions. Soil samples were collected in areas of natural vegetation in the vicinity of TAH in the state of Pará, Brazil. Chemical attributes and particle size were determined, besides concentrations of Fe, Al, Mn, and Ti by sulfuric acid digestion, Si after alkaline solution attack, and poorly crystalline Fe, Al, and “free” Fe oxides. Mehlich III solution extracted greater contents from Fe, Al, and Pb as compared to Mehlich I and DTPA-TEA and similar contents from Cd, Mn, Zn, and Cu. Significant correlations were found between concentrations of PTEs and the contents of Fe and Mn oxides as well as organic carbon and soil cation exchange capacity. Contents of Cu, Mn, Fe, and Zn by the three methods were positively correlated.  相似文献   

15.
Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.  相似文献   

16.
Concentrations of elements (As, Co, Cu, Ni, Mo, Pb, V, and Zn) are studied in the sediments of two adjacent stretches of Chenar Rahdar river. The first stretch (S1) is influenced by urban and arable land wastewater, and the second (S2) is mainly loaded with industrial effluents. The average abundance order of heavy metals content in S1 sediments is Ni > V > Zn > Cu > Co > As > Pb > Mo and in S2 sediments is Ni > Zn > V > Cu > Mo > Pb > Co > As. The maximum average concentration for these heavy metals (except for As) occurs in the S2 sediments. The contamination factor (CF) base of background in S1 for eight analyzed elements is moderate. The CF for Cu, Zn, and Pb in S2 sediments is considerable. The highest CF in S1 and S2 sediments is observed for Mo (CF = 10.95 and 12.41) and indicates very high contamination. The application of modified degree of contamination values (mCd) indicates low and high degree of contamination (1.89–4.15) in S1 and S2, respectively. Calculated enrichment factors (EF) reveal enrichment of Mo and As in S1 and Zn, Cu, Mo, and Pb in S2 compared to the average abundances of background level. The maximum EF for Mo is 7.61 (significant enrichment), while Pb, Zn, and Cu with maximum EF between 2 and 5 indicate moderate contamination. Principal component analysis (PCA) shows distinctly different elemental associations in S1 and S2 sediments. The strong association of Zn, Co, Ni, Sc, Cu, Al and Fe in S1 suggests a similar source. The results of PCA for Zn, Pb, Mo and Cu in S2 (componente2) indicate that these metals are influenced by anthropogenic activity. Also, high loading heavy metals with OC (0.97) indicate that organic carbon plays a significant role in the distribution and sorption of these heavy metals in the sediments. Factor analysis indicates that As and Mo behave differently in sediment samples.  相似文献   

17.
Housedusts and garden soils were sampled in 14 houses in the vicinity of a secondary Pb smelter and analysed for concentrations of Pb, Zn, Cu, Cd, As, and Hg. Sixty-one topsoil samples were also taken from a 2 km2 grid covering the smelter grounds and surrounding residential areas and analysed for concentrations of Pb, Zn, Cd and Cu. Contour maps generated from the grid data indicate significant contamination in the area (maximum Pb concentration 58 500 g g-1), particularly down-wind of the smelter grounds. A geometric mean Pb concentration of 2225 g g-1 was recorded in garden soil and similarly elevated levels were recorded for Zn, Cd, As and Sb. In housedusts, a geometric mean Pb concentration of 1668 g g-1 was observed. Whilst housedust metal concentrations were generally elevated, compared to other urban or residential areas, there appears to be a large degree of attenuation of the metals between the exterior and interior environments of the homes studied. A significant correlation was not recorded between metal concentrations of garden soils and housedusts. There were significant correlations for: distance from the smelter against garden soil metal concentrations; garden soil metal concentrations against each other; housedust metal concentrations against each other; and house age against garden soil metal concentrations.  相似文献   

18.
长江南京段近岸沉积物和土壤中重金属分布特征分析   总被引:2,自引:1,他引:1  
通过测定沉积物和土壤中Cd、Pb、Cr、Zn、Cu、Ni 6种重金属元素的平均含量,计算其富集因子,分析长江南京段近岸沉积物和土壤中重金属的空间分布特征,结果表明,几种重金属在沉积物中的富集次序为:CdPbCr1NiCuZn,在土壤中为:CdZnCu1CrPbNi,除Zn和Cu外,其他几种金属在沉积物中的富集程度高于土壤,同时Cd的含量超过土壤环境质量三级标准。以Cd和Pb为例分析了重金属含量与沉积物粒级之间的关系,回归分析显示,Cd、Pb的含量与颗粒物的粒级呈显著的相关性,与细颗粒物的含量有密切关系,细颗粒携带的重金属,在长江水力分选作用下到达下游,成为沉积物中重金属的主要来源。  相似文献   

19.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

20.
干旱区中小城市降雪中金属元素沉降通量研究   总被引:1,自引:0,他引:1  
文章以干旱区中小城市昌吉市为研究区,选择2011年12月至2012年2月期间较为典型的6场次降雪进行采样,利用ICP-MS测定降雪中20种金属元素,并探讨金属元素的沉降通量、富集特征及其来源。研究表明,降雪中Al的年沉降通量最大,为10.32 mg/m2;Fe、Ba、Zn、V、Cu的年沉降通量次之,集中在1.40~6.11 mg/m2;As、Ni、Mn、Cr、Mo、Sb年沉降通量较小,集中在0.08~0.39 mg/m2;Be、Co、Cd、Pb、Hg、Tl、Th、U的年沉降通量最小,集中在0.001~0.053 mg/m2。Al、Fe、Mn、Be、Th富集系数在0.32~3.05之间,这些金属元素主要来自自然来源;Cd与Hg富集系数分别为923.23、2511.47,达到严重富集的程度;其余金属元素富集系数在10~500之间,属中度富集。昌吉州境内煤炭资源丰富,近年煤炭开采量较大,城区供暖面积不断加大,供暖不断加强;市区车流量急剧增加,运输排放加剧;近郊及周边地区各类工业的分布等是各类金属元素在雪中富集的主要原因。冰雪节后冰灯拆除,降雪可有效捕集大气中的汞,冬季气温不利于Hg挥发等对Hg的严重富集也有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号