首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The pollution of soil is a source of danger to the health of people, even to those living in cities. The anthropogenic pollution caused by heavy industries enters plants then goes through the food chain and ultimately endangers human health. In the context, the knowledge of the regional variability, the background values and anthropogenic vs. natural origin of potentially harmful elements in soils is of critical importance to assess human impact. The present study was undertaken on soil contamination in Surat, Gujarat (India). The aims of the study were: i) to determine extent and distribution of heavy metals (Ba, Cu, Cr, Co, Ni, Sr, V and Zn) ii) to find out the large scale variability, iii) to delineate the source as geogenic or anthropogenic based on the distribution maps and correlation of metals in soils. Soil samples were collected from the industrial area of Surat from top 10 cm layer of the soil. These samples were analysed for heavy metals by using Philips PW 2440 X-ray fluorescence spectrometer. The data reveal that soils in the area are significantly contaminated, showing higher levels of toxic elements than normal distribution. The heavy metal loads of the soils in the study area are 471.7 mg/kg for Ba, 137.5 mg/kg for Cu, 305.2 mg/kg for Cr, 51.3 mg/kg for Co, 79.0 mg/kg for Ni, 317.9 mg/kg for Sr, 380.6 mg/kg for V and 139.0 mg/kg for Zn. The higher concentrations of these toxic metals in soils need to be monitored regularly for heavy metal enrichment.  相似文献   

2.
This paper reports the first results of geochemical survey carried out in and around Siddipet, taking soil (topsoil 0–25 cm and subsoil 70–95 cm) as the sampling media. The data were obtained in a consistent way from 61 sites. The samples were analyzed for 29 elements (As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr, Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P) by X-ray fluorescence spectrometer, and baseline levels for these elements are presented. Results reveal that the correlation between the geochemical patterns in the soils developed on different litho-variants is not straight forward, but some general trends can be observed. Regional parent materials and pedogenesis are the primary factors influencing the concentrations of trace elements while anthropogenic activities have secondary influence.  相似文献   

3.
Preliminary investigations were carried out in and around Medak and Sangareddy areas to study the baseline levels of ten major (Si, Al, Ca, Fe, K, Mg, Mn, Na, P, and Ti) and 14 trace elements (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, V, Y, Zn, and Zr) on 97 representative soil samples comprising of topsoil (0–25 cm) and subsoil (90–115 cm). The data was factor analyzed for geochemical associations. Because varimax factor loading values show the best results, these were used in interpretation. The derived factors are usually interpreted as associations of elements that imply a common source or behavior in regard to geogenic or anthropogenic influences. It was found that the difference between topsoil and subsoil is not only expressed by concentration differences but also by element associations. Five factors were extracted in topsoil data and account for 80% of the total data variance, while seven factors were extracted in subsoil, which account for 88% of the total variance, suggesting that metal concentration was controlled by soil composition and also that, apart from natural contributions of trace elements to the soils, human activities like agriculture and industrial growth possibly accounted for elemental inputs in soils.  相似文献   

4.
One hundred and thirty composite soil samples were collected from Hamedan county, Iran to characterize the spatial distribution and trace the sources of heavy metals including As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap statistical analysis was used; for interrelation of spatial patterns of pollution, the disjunctive kriging and geoenrichment factor (EFG) techniques were applied. Heavy metals and soil properties were grouped using agglomerative hierarchical clustering and gap statistic. Principal component analysis was used for identification of the source of metals in a set of data. Geostatistics was used for the geospatial data processing. Based on the comparison between the original data and background values of the ten metals, the disjunctive kriging and EFG techniques were used to quantify their geospatial patterns and assess the contamination levels of the heavy metals. The spatial distribution map combined with the statistical analysis showed that the main source of Cr, Co, Ni, Zn, Pb, and V in group A land use (agriculture, rocky, and urban) was geogenic; the origin of As, Cd, and Cu was industrial and agricultural activities (anthropogenic sources). In group B land use (rangeland and orchards), the origin of metals (Cr, Co, Ni, Zn, and V) was mainly controlled by natural factors and As, Cd, Cu, and Pb had been added by organic factors. In group C land use (water), the origin of most heavy metals is natural without anthropogenic sources. The Cd and As pollution was relatively more serious in different land use. The EFG technique used confirmed the anthropogenic influence of heavy metal pollution. All metals showed concentrations substantially higher than their background values, suggesting anthropogenic pollution.  相似文献   

5.
Heavy Metal Pollution of Surface Soil in the Thrace Region, Turkey   总被引:1,自引:0,他引:1  
Abstact Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 35 elements in the soil samples. Concentrations of As, Cd, Co, Cu, Mn, Ni, Pb and Zn were determined using AAS and GF AAS, and ENAA was used for the remaining 27 elements. Results for As, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, V and Zn are reported for the first time for soils from this region. The results show that concentrations of most elements were little affected by the industrial and other anthropogenic activities performed in region. Except for distinctly higher levels of Pb, Cu, Cd and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb and Zn were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology  相似文献   

6.
Regular ingestion of soils could pose a potential health threat due to long-term toxic element exposure. In order to estimate the human bioavailability quotients for As and heavy metals, 12 urban roadside soil samples were collected and analyzed for As, Pb, Cu, Zn, Ni, Co, and Cr using Simple Bioavailability Extraction Test (SBET). The quantities of As, Pb, Cu, Zn, Ni, Co, and Cr leached from soils within the simulated human stomach for 1 h indicated, on average, 27.3, 71.7, 40.4, 59.3, 17.7, 27.2 and 5.6% bioavailability, respectively. Significant positive correlations were observed between the amounts leached using SBET and the total amounts dissolved with HNO3-HCl-HF acid mixtures. Stepwise multiple regression analysis indicated that the amounts leached with SBET for As, Pb, Zn, Ni, and Co were not related to any of the physic-chemical parameters measured (i.e., soil texture, pH, total organic matter). These results may be valuable for providing input data for risk assessment at sites subject to anthropogenic soil contamination.  相似文献   

7.
The distribution and accumulation of heavy metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Ba, Pb) in the water, sediments, plankton of Yeniça?a Lake, and its potential sources (creeks, sewage, artesian well, soil) were investigated during 1-year study period as monthly or seasonally. Element analyses were performed by ICP–MS. Results showed that the trace and toxic elements (Al, As, Mn, Pb, Fe) concentration in lake water and/or its feeding sources were above the recommended water standards (WHO, EC, EPA, TS-266). It was found that the maximum accumulation of the heavy metals iron, aluminum, manganese, zinc, and barium in the sediment of Yeniça?a Lake. The accumulation order of trace metals were Fe > Al > Mn > Zn > Ba > Ni > Cr > As > Cu > Pb > Co > Mo > Sn > Cd in the lake, creeks sediment, and soil samples. The similar results suggest that the accumulation of heavy metals in the sediment is a natural process. Metals accumulated in the lake are naturally mixed from the soil. However, the presence of heavy metals in the analysis of artesian well water and sewage reveals that the transportation occurs also from the groundwater to the lake. The results obtained in plankton in Yeniça?a Lake showed that aluminum, iron, manganese, zinc, and barium were most accumulated elements in the plankton. The lower averages of lead prevalent in the water and sediment during some months were seen to have a significant mean accumulation in the plankton.  相似文献   

8.
Twenty-one surface sediment samples were collected from Akkaya Dam. Heavy metal concentrations (Mo, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cr, As, V and Cd), grain size, organic carbon and carbonate contents were studied in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of dam. The sediments in the study area are mostly very fine sands. However, mud was observed in the northeast of the dam. Sediment pollution assessment was carried out using enrichment factor. The calculation of enrichment factors showed that Mo is depleted by 1.0 whereas Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr and Cd are enriched by 3, 5.4, 7, 2.7, 2.2, 3.4, 42.3, 2.1, 1.8 and 7.2, respectively. Relatively high concentrations heavy metals occurred in north (textile industry area) and east (Karasu River) due to enrichment controlled by anthropogenic wastes. The results of correlation analysis show low–medium positive and negative correlations among metals, grain size, carbonate contents and organic carbon and indicate that heavy metals in sediments of the Akkaya Dam have different anthropogenic sources.  相似文献   

9.
The soils of the Brazilian Amazon exhibit large geochemical diversity reflecting the different soil formation processes in an area covering 49% of the Brazilian territory. Soil contamination by heavy metals is one of the threats to the sustainability of this Biome but establishing quality reference values (QRVs) for the region is a challenging owing to the immense territorial area of the Amazon. This study aimed to determine the natural background of heavy metals in soils from the southwestern Brazilian Amazon in order to propose QRVs for Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, and Zn for alluvial sedimentary soils. One hundred and twenty-eight soil samples were collected at a depth of 0.0–0.2 m in sites with minimal anthropogenic interference. Soil sample digestion was based on the EPA 3051A method and metal concentrations were determined by ICP-OES. QRVs calculated for the southwestern Brazilian Amazon are among the lowest recorded in Brazil (mg kg?1): Ba (16.5), Cd (0.1), Cr (6.9), Cu (2.8), Fe (15.4), Mn (13.4), Ni (1.7), Pb (4.4), Sb (0.9), and Zn (5.7). The low metal concentration is likely a result of the sedimentary origin of the soils. The results of this study can serve as a basis for defining public policies to investigate the environmental impacts resulting from changes in land use in areas of the Brazilian Amazon.  相似文献   

10.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

11.
15 road and 14 soil dust samples were collected from an oilfield city, Dongying, from 11/2009-4/2010 and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) for V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb within PM(2.5), PM(10) and PM(100) fractions synchronously. Metal concentrations, sources and human health risk were studied. Results showed that both soil and road dust exhibited higher values for Mn and Zn and lower values for Co and Cd for the three fractions. Mass concentration ratios of PM(2.5)/PM(10) and PM(10)/PM(100) for metals in road and soil dust indicate that most of the heavy metals tend to concentrate in fine particles. Geoaccumulation index and enrichment factors analysis showed that Cu, Zn and Cd exhibited moderate or heavy contamination and significant enrichment, indicating the influence of anthropogenic sources. Vanadium, Cr, Mn and Co were mostly not enriched and were mainly influenced by crustal sources. For Ni, As and Pb, they ranged from not enriched to moderately enriched and were influenced by both crustal materials and anthropogenic sources. The conclusions were confirmed by multivariate analysis methods. Principle component analysis revealed that the major sources were vehicle emission, industrial activities, coal combustion, agricultural activities and crustal materials. The risk assessment results indicated that metal ingestion appeared to be the main exposure route followed by dermal contact. The most likely cause for cancer and other health risks are both the fine particles of soil and road dusts.  相似文献   

12.
There is a growing concern over the potential accumulation of trace element concentration in groundwater of coastal aquifer owing seawater encroachment in the last several decades. A total of 29 groundwater samples collected from Pesarlanka Island, Krishna delta, Andhra Pradesh, India were analyzed for 13 trace elements (B, V, Mn, Fe, Ni, Co, Cu, Zn, As, Sr, Cd, Ba, and Pb) using inductively coupled plasma mass spectrometry. The results reveal that B, Fe, Ni, As, Sr, and Pb vary from 11.22 to 710.2, 1.25 to 684.6, 0.02 to 37.33, 27.8 to 282.3, 164.1 to 7,009, and 1.97 to 164.4 μg/l, respectively. Ba, Cd, Co, Cu, Ni, V, and Zn are almost within permissible limits for drinking water, but As, Fe, Mn, Pb, B, and Sr are above the permissible limit. The toxic element Pb is 1.64 times more than the maximum permissible limits of drinking water. The minimum value of As is also 2.78 times more, whereas the maximum is 28.2 times the permissible limit. The spatial distributions of alkaline earths (Sr, Ba), transition metals (V, Co, Ni, Fe), metallic elements (Cu, Pb), and (As) were found in considerable variation in the entire Island. Good cross-correlations were found between As, B, Co, and Sr with total dissolved solids and among other trace elements such as B, As, Co, and Sr. The variability observed within the groundwater samples is closely connected to the sea spray input; hence, it is primarily a consequence of geographical and meteorological factors, such as distance from the ocean and time of year. The trace element levels, in particular those of heavy metals, are very low, suggesting an origin from natural sources rather than from anthropogenic contamination. A few trace elements (Sr and B) are found as sensitive parameters responding to changes in fresh to saline groundwater environment. The highly elevated trace elements in this area which may be attributed to marine sediments or death and decay of plants are presented in this paper.  相似文献   

13.
Concentrations of 12 metals (Fe, Mn, Cr, Mo, Ni, Pb, Se, Sr, U, V, Zn, and Zr) in surface sediments of Karachi Coast, Pakistan were determined to evaluate their distribution and pollution assessment. The measured metals in the sediments were found to be in the range of Fe, 0.84–6.96 %; Mn, 300–1,300 μg/g; Cr, 12.0–319.84 μg/g; Mo, 0.49–2.03 μg/g; Ni, 1.53–58.86 μg/g; Pb, 9.0–49.46 μg/g; Se, 0.25–.86 μg/g; Sr, 192–1185 μg/g; U, 0.19–1.66 μg/g; V, 15.80–118.20 μg/g; Zn, 15.60–666.28 μg/g; and Zr, 44.02–175.26 μg/g. The mean contents of the metal studied were: Fe, 3.07 %, Mn, 0.05 %; Cr, 96.75 μg/g; Mo, 1.34 μg/g; Ni, 31.39 μg/g; Pb, 23.24 μg/g; Se, 0.61 μg/g; Sr, 374.83 μg/g; U, 0.64 μg/g; V, 61.75 μg/g; Zn, 204.75 μg/g; and Zr:76.27 μg/g, and arrangement of the metals from higher to lower mean content in this area is: Fe?>?Zn?>?Mn?>?Sr?>?Zn?>?Cr?>?Zr?>?V?>?Ni?>?Pb?>?Mo?>?U?>?Se. There is no significant correlation among most of these metals, indicating different anthropogenic and natural sources. To assess ecotoxic potential of marine sediments, Numerical Sediment Quality Guidelines were also applied. The concentration of Pb in all the sediments except one was lower than the threshold effect concentration (TECs) showing that there are no harmful effects to marine life from Pb. On the other hand, the concentrations of Cr, Ni, and Zn exceeded TEC in three stations, indicating their potential risk. The degree of pollution in sediments for metals was assessed by calculating enrichment factor (EF) and pollution load index (PLI). The results indicated that sediments of Layari River Mouth Area, Fish Harbour, and KPT Boat Building Area are highly enriched with Cr and Zn (EF?>?5). Sediments of Layari River Outfall Zone were moderately enriched with Ni and Pb (EF?>?2). The pollution load index was found in the range of 0.98 to 1.34. Lower values of PLI (≤1) at most of sampling locations imply no appreciable input from anthropogenic sources. However, relatively higher PLI values (>1) at Layari River Mouth Area, Fish Harbour, and KPT Boat Building Area are attributed to increased human activity in the area.  相似文献   

14.
Mining has been carried out upstream of Miyun Reservoir, Beijing, for several decades, and has caused metal emissions to the environment, threatening human health. We conducted a soil survey to assess metal contamination in this area and to determine distribution of heavy metals in the particle size. We attempted to determine the possible sources of the metals and the significance of metals in the fine particle fractions to soil risk assessments. Thirty-four soil samples were collected, and eight samples were partitioned into seven size fractions. Most of the metal concentrations in the soils were higher than the background levels in Beijing, and the metal concentrations and total organic matter (TOC) contents generally increased as the particle size decreased. Each metal except Hg significantly positively correlated with the TOC. The metals in the coarse-grained soils were mainly derived from parent materials, but the metals in the fine fractions were mostly anthropogenic. Statistical analyses showed that there were three metal sources: Cd, Cu, Hg, Pb, and Zn had anthropogenic sources; Co, Cr, Ni, and V had mixed anthropogenic and natural sources; and As and Be had natural sources. The trace metals were primarily in the clay and fine silt fractions, and they might pose health risks through the inhalation of resuspended soil particles (PM10 and PM2.5). The elevated accumulation factors, enrichment factors, and ecological risk indices for the metals in the fine fractions suggest that risk assessments should be based on the fine particle size.  相似文献   

15.
The surface water qualities of Hussainsagar, an eutrophic urban lake in the midst of twin cities of Hyderabad and Secunderabad (India) receiving large quantities of external inputs—both untreated municipal sewage containing industrial effluents, and treated sewage, a large number of annually immersed idols of God and Goddess, and intense boating activities were assessed in relation to the concentration of elements including heavy metals of the water along the necklace road of the lake. Elemental analyses of water using ICP-MS revealed 26 elements including heavy metals—As, Cd, Cr, Ni, Pb, Cu, Fe, Mn, Se, Ba, Zn, Mo, V, Co, Ag, Sr, Rb, Mg, K, Ca, Al, Si, Sb, Na, Li, and B, in the surface water of the lake. Of these, the first 15 elements were found in elevated concentrations in the water at the outfall point of the untreated municipal sewage (site 3), which was the main dominating source of contamination of the lake water while Cu and Sb were recorded in higher concentrations at the outfall of treated effluent from Sewage Treatment Plant, and three elements (Ba, Si, and B) were in higher concentration at the sites of outfall of sewage flowing from an oxygenated pond (site 4), Ca, Zn, and Sr, at the site immersed with idols (site 1), and Pb, Ag, and Al at the center of the lake (site 5) with intense boating activities. Concentrations of most of these elements exceeded the maximum permissible limits of national (Indian Council Medical Research) standards for drinking water. The concentrations of most of the elemental contaminants showed significant positive correlations between them.  相似文献   

16.
Total concentrations of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sr, Ti, V and Zn in the epiphytic lichen Parmelia sulcata and superficial soils from 60 remote sampling sites in Tuscany (central Italy) were determined to evaluate the contribution of soil to the elemental composition of the lichen. The results showed that in the Mediterranean environment, the trace element content of unwashed lichen samples is greatly affected by soil contamination. However, despite the strong correlations between the concentrations of lithogene elements such as Al, Fe and Ti in P. sulcata, lichen levels of these elements were not at all linearly correlated with their concentrations in the soil, suggesting that dust contamination is highly variable and probably dependent on local site characteristics. All methods evaluated to minimize soil contamination indicated Cu, Pb and Zn as elements of atmospheric origin. However, while levels of Pb were similar to those reported for background areas, moderate pollution by Cu and Zn, probably from fertilizers used in agriculture, was revealed. For elements such as Cd and Mo, identified as atmophile, some uncertainty exists due to the fact that they are essential for lichen metabolism and accumulate intracellularly in lichens; they may therefore occur in soluble form in the lichen thallus.  相似文献   

17.
Understanding regional variations of soil heavy metals and their anthropogenic influence are very important for environmental planning. In this study, 286 surface soil samples were collected in Fuyang county, and the 'total' metals for copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd) and nickel (Ni) were measured in 2005. Statistic analysis showed that Cu, Zn, Pb and Cd had been added by exterior factors, and Ni was mainly controlled by natural factors. The combination of multivariate statistical and geostatistical analysis successfully grouped three groups (Cu, Zn and Pb; Cd; and Ni) of heavy metals from different sources. Through pollution evaluation, it was found that 15.76% of the study area for Cu, Zn and Pb, and 46.14% for Cd suffered from moderate or severe pollution. Further spatial analysis identified the limestone mining activities, paper mills, cement factory and metallurgic activities were the main sources for the concentration of Cu, Zn, Pb and Cd in soils, and soil Ni was mainly determined by the parent materials.  相似文献   

18.
Soils play a vital role in the quality of the urban environment and the health of its residents. City soils and street dusts accumulate various contaminants and particularly potentially toxic elements (PTEs) from a variety of human activities. This study investigates the current condition of elemental concentration in the urban soils of Hamedan, the largest and the fastest-growing city in western Iran. Thirty-four composite soil samples were collected from 0 to 10 cm topsoil of various land uses in Hamedan city and were analyzed for total concentration of 63 elements by ICP-MS. The possible sources of elemental loadings were verified using multivariate statistical methods (principal component analysis and cluster analysis) and geochemical indices. The spatial variability of the main PTEs was mapped using geographic information system (GIS) technique. The results revealed a concentration for As, Co, Cr, Mn, Mo, Ni, and V in the soil samples comparable to the background values as well as a range of associations among these elements in a single component suggesting geogenic sources related to geological and pedogenic processes, while the soils mostly presented a moderate to considerable enrichment/contamination of Cd, Zn, Pb, and Sb and moderate enrichment/contamination of Cu, Zn, and Mo. It was found that anthropogenic factors, vehicular traffic in particular, control the concentration of a spectrum of elements that are typical of human activities, i.e., Cd, Cu, Hg, Pb, Sb, and Zn. Lead and Sb were both the most enriched elements in soils with no correlation with land use highlighting general urban emissions over time and the impact of transport networks directly on soil quality. The highest concentrations of As were recorded in the southern part of the city reflecting the influence of metamorphic rocks. The effect of the geological substrate on the Co and Ni contents was confirmed by their maximum concentrations in the city’s marginal areas. However, high spatial variability of urban elements’ contents displayed the contribution of various human activities. In particular, the increased concentration of Cd, Sb, and Pb was found to be consistent with the areas where vehicular traffic is heaviest.  相似文献   

19.
Concentrations of elements (As, Co, Cu, Ni, Mo, Pb, V, and Zn) are studied in the sediments of two adjacent stretches of Chenar Rahdar river. The first stretch (S1) is influenced by urban and arable land wastewater, and the second (S2) is mainly loaded with industrial effluents. The average abundance order of heavy metals content in S1 sediments is Ni > V > Zn > Cu > Co > As > Pb > Mo and in S2 sediments is Ni > Zn > V > Cu > Mo > Pb > Co > As. The maximum average concentration for these heavy metals (except for As) occurs in the S2 sediments. The contamination factor (CF) base of background in S1 for eight analyzed elements is moderate. The CF for Cu, Zn, and Pb in S2 sediments is considerable. The highest CF in S1 and S2 sediments is observed for Mo (CF = 10.95 and 12.41) and indicates very high contamination. The application of modified degree of contamination values (mCd) indicates low and high degree of contamination (1.89–4.15) in S1 and S2, respectively. Calculated enrichment factors (EF) reveal enrichment of Mo and As in S1 and Zn, Cu, Mo, and Pb in S2 compared to the average abundances of background level. The maximum EF for Mo is 7.61 (significant enrichment), while Pb, Zn, and Cu with maximum EF between 2 and 5 indicate moderate contamination. Principal component analysis (PCA) shows distinctly different elemental associations in S1 and S2 sediments. The strong association of Zn, Co, Ni, Sc, Cu, Al and Fe in S1 suggests a similar source. The results of PCA for Zn, Pb, Mo and Cu in S2 (componente2) indicate that these metals are influenced by anthropogenic activity. Also, high loading heavy metals with OC (0.97) indicate that organic carbon plays a significant role in the distribution and sorption of these heavy metals in the sediments. Factor analysis indicates that As and Mo behave differently in sediment samples.  相似文献   

20.
The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16?×?103 mg?kg?1, respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg?kg?1. Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号