首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A geochemical study of the bottom sediments of Lake Shinji and the River Ohashi in southwestern Japan was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing enrichment factor (EF), pollution load index (PLI), and geoaccumulation index (I geo). Present-day water quality was also assessed. Results showed that the water quality of Lake Shinji contrasts slightly between the upper and lower parts. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements and total sulfur (TS). Average abundances of As, Pb, Zn, Cu, Ni, and Cr in the Shinji sediments were 10, 29, 143, 27, 19, and 54 ppm, respectively, compared to 6, 18, 57, 16, 10, and 37 ppm in the river sediments. Based on the EF, PLI, and I geo, the lake sediments are moderately to strongly polluted with respect to As, moderately polluted with Pb, Zn, and Cr, and unpolluted with Cu and Ni. The high EF and I geo for As, Pb, and Zn in the lake sediments indicate that metal concentration has occurred in Shinji. Increases in the abundances of these metals are likely related to the fine-grained nature of the sediments, reducing conditions of the bottom sediments, enrichment in organic matter, and possibly a minor contribution from non-point anthropogenic sources. Trace metal contents are strongly correlated with Fe2O3 and TS, suggesting that Fe oxides and sulfides play a role in controlling abundances in the investigated areas.  相似文献   

2.
In an effort to assess the potential contamination and determine the environmental risks associated with heavy metals, the surface sediments in Liaodong Bay, northeast China, were systematically sampled and analyzed for the concentrations of Cu, Pb, Zn, Cr, Ni, As, and Hg. The metal enrichment factor (EF) and geoaccumulation index (I geo) were calculated to assess the anthropogenic contamination in the region. Results showed that heavy metal concentrations in the sediments generally met the criteria of China Marine Sediment Quality (GB18668-2002); however, both EF and I geo values suggested the elevation of Pb concentration in the region. Based on the effect-range classification (TEL-PEL SQGs), Cu, Pb, Ni, and As were likely to pose environment risks, and the toxic units decreased in the order: Ni?>?Pb?>?Cr?>?Zn?>?As?>?Cu?>?Hg. The spatial distribution of ecotoxicological index (mean-ERM-quotient) suggested that most of the surface sediments were “low–medium” priority zone. Multivariate analysis indicated that the sources of Cr, Ni, Zn, Cu, and Hg resulted primarily from parent rocks, and Pb or As were mainly attributed to anthropogenic sources. The results of this study would provide a useful aid for sustainable marine management in the region.  相似文献   

3.
The aim of this study was to assess the pollution status of metals in sediments of Hara Biosphere Reserve using pollution indicators. For this purpose, sediment samples from nine locations were collected and characterized for metal content (Pb, Cr, Zn, Cu, and Fe) using the total digestion technique. Comparison of metal concentrations with that of sediment quality guidelines (SQGs) demonstrated no association with negative biological effects for Cu and Zn, while the values of Pb and Cr mainly illustrated to have association with negative biological effects. The results of the geo-accumulation index (I geo) indicated no contamination for Cr, Cu, Zn, and Fe, while the values of Pb demonstrated to have moderate contamination based on I geo values. The analysis of the enrichment factor (EF) showed no enrichment for Cu and Zn and minor enrichment for Pb and Cr. Similar results were also found for quantification of contamination (QoC) analysis, where the values of Cu and Zn demonstrated to have a geogenic source of contamination, while the values of Pb and Cr mainly illustrated to have an anthropogenic source of contamination. According to EF and QoC calculations, the values of Cu and Zn were derived mainly from natural processes and exposure of material from the earth’s crust, while the values for Pb and Cr were enriched by anthropogenic activities. The results of the contamination factor (C f i ) demonstrated low contamination levels for Fe, Cr, Zn, and Cu and moderate contamination levels for Pb. The pollution load index (PLI), showing the overall contamination of metals, demonstrated moderate pollution status in the study area.  相似文献   

4.
Soil, rock and water samples were collected from India??s oldest coalfield Raniganj to investigate trace metal contamination from mining activity. Our data reveal that trace metal concentration in soil samples lies above the average world soil composition; especially, Cr, Cu, Ni and Zn concentrations exceed the maximum allowable concentration proposed by the European Commission for agricultural soils. In particular, Cr, Cu and Ni exceed the ecotoxicological limit, and Ni exceeds the typical value for cultivated soils. Mineral dissolution from overburden material and high adsorption capacity of laterite soil are responsible for the elevated concentrations. This is evident from enrichment factor (E f), geoaccumulation index (I geo) and metal pollution index values. Sediment quality guideline index indicates toxicity to local biota although enrichment index suggests no threat from consuming crops cultivated in the contaminated soil.  相似文献   

5.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

6.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

7.
An investigation is reported of the degree of metal pollution in the sediments of Kafrain Dam and the origin of these metals. Fourteen sampling sites located at Kafrain Dam were chosen for collecting the surface, cutbank, and dam bank sediment samples. The sediment samples have been subjected to a total digestion technique and analyzed by atomic absorption spectrometer for metals including Pb, Zn, Cd, Ni, Co, Cr, Cu, Mn, and Fe. XRD analyses indicate that the sediments of Kafrain Dam are mainly composed of calcite, dolomite, quartz, orthoclase, microcline, kaolinite, and illite reflecting the geology of the study area. The enrichment factor (EF) and geoaccumulation index (I geo) have been calculated and the relative contamination levels assessed in the study area. The calculations of I geo are found to be more reliable than of those of EF. The enrichment of metals in the study area has been observed to be relatively high. I geo results reveal that the study area is not contaminated with respect to Ni, Co, Cr, Cu, and Mn; moderately to strongly contaminated with Pb; and strongly to extremely contaminated with Cd and Zn. The high contents of Pb, Cd, and Zn in the study area result from anthropogenic activities in the catchment area of the dam site. These sources mainly include the agricultural activities, sewage discharging from various sources within the study area (effluent of wastewater treatment plants, treated and untreated wastewaters, and irrigation return water), and the several industries located in the area. Degrees of correlations among the various metals in the study area are suggested by the results and the intermetallic relationship.  相似文献   

8.
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.  相似文献   

9.
This study is carried out to evaluate potentially toxic metal concentrations (As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, and Zn) together with their spatial distribution, degree of pollution, and potential ecological risk in Kor river sediments (southwest Iran) using sediment quality guidelines, geoaccumulation index (I geo), Hakanson potential ecological risk index (RI), and standard methods of statistical analysis. The study area stretches some 140 km from the Drodzan Dam to Bakhtegan Lake, a stretch of river where different industrial and domestic activities (e.g., petrochemical complex, oil refinery, industrial meat processing complex, Marvdasht city sewage) and ecological value overlap with each other. Calculated geoaccumulation index indicate that 50 % of the stations are moderately to very extremely polluted. The potential ecological risk for nine investigated metals in Kor river is Hg (948)?>?Mo (51.9)?>?Ni (37.8)?>?Cd (29.8)?>?As (22)?>?Cu (16.6)?>?Pb (13.3)?>?Zn (3.3)?>?Cr (1). Results show that sediments in parts of Kor river sediments are heavily affected by effluents discharged from industrial plants and other parts are affected by agriculture and urban runoff from nearby lands. These phenomena may cause a risk of secondary water pollution under sediment disturbance and/or changes in the physical–chemical characteristics of the aquatic system.  相似文献   

10.
Heavy metals concentrations in surface sediments from Miyun Reservoir were determined to evaluate the pollution and identify the sources. The average content of metals in sediments from Miyun Reservoir followed the order Al>Fe>Ti>Mn>V>Zn>Cr>Ni>Cu>Pb>As>Cd>Hg, and the most mean values were lower than the globe average shale. Heavy metals concentrations at the inflow area of Baihe were higher than those at the inflow area of Chaohe. Heavy metals pollution assessment was carried out by factor enrichment (EF), geoaccumulation index (I geo), and potential ecological risk (RI). The EF values for all heavy metals except Hg, Cd, and Cr at several sites were lower than 3, suggesting low anthropogenic impact on the metals level. The I geo values of Pb indicated that half of the sites were unpolluted to moderately polluted and mainly located in the Baihe area of the reservoir. The RI showed that heavy metals of Miyun Reservoir were low potential risk, however, Hg approached or belonged to moderate ecological risk at sites of M5, M7, and M13. Correlation analysis and principal component suggested that Ni, Cu, V, Zn, Mn, Cr, Ti, and Pb were derived from soil erosion in upper reaches of the reservoir, while Fe, Cd, Hg, As, and partial Pb originated from anthropogenic sources, particularly industrial mining and gold tailings.  相似文献   

11.
BouIsmail (BIB) and Algiers (AB) are the most important bays in Algeria, where busy shipping activities and various industry complexes introduce different pollutants including heavy metals to the aquatic environment. The main goal of this study was to assess the contamination levels of heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in surface sediments and red mullet (Mullus barbatus) of the BIB and AB and to examine the possibility of the use of their enrichment factors (EFs) to track down the sources of metals (natural processes or human activity). The geoaccumulation index (I geo) was calculated as a criterion to indicate the contamination level for each heavy metal. Moreover, geographical information systems based on spatial analysis methods (inverse distance weighting (IDW)) and statistical approaches (the principal component (PCA)) were performed to assess the spatial influences of multiple anthropogenic sources in different sampled areas. The results of both EF and I geo revealed that the study area is exposed to various anthropogenic activities. The pollution load index (PLI) values of sediment samples in the different sites of Algiers and BIB ranged from 0.2 to 3.4 illustrating highly contaminated sediments. Significant bioaccumulation of Cd, Cu, Hg, Pb, and Zn (bioaccumulation factor >100%) were observed in muscle and liver of red mullet, suggesting potential health risks through consuming this fish species.  相似文献   

12.
In the present investigation, bulk and chemical partitioning of elements (Cu, Mn, Ni, Zn, Fe, Ca) together with organic matter as a loss in ignition in the Qarechay River bed sediments have been studied. The concentration of metals in Qarechay River bed sediments is governed by the geological units of the study area. The study of anthropogenic portion shows that a small proportion of elemental concentration belongs to this phase. However, Mn has a large portion of anthropogenic sources (43 %). Also, Mn has a share of 13.6 % in sulfide fractions. This result indicates that Mn is a highly mobile element and can easily enter the water column. The presence of Mn in sulfide fraction might be indicative of initial stages of conversion of oxidation state into reduction in Qarechay River. Share of metals in anthropogenic portion is in the following order: Mn (43 %)?>?Cu (19 %)?>?Zn (10 %)?>?Ni (3 %)?>?Fe (0 %). Organic metallic bonds are not significantly present in the study area. Geochemical index (I geo), pollution index (I poll), enrichment factor (EF), and pollution load index (PLI) values are indicative of a clean environment throughout the river course. These values are in well agreement with results of chemical partitioning data. Eventually, based on the results of chemical partitioning, regional standard of elements for Qarechay River bed sediments has been established.  相似文献   

13.
The present study on heavy metal contamination in soil and their accumulation in edible part (leaves) and roots of Spinacia oleracea (Spinach) on irrigation with paper mill effluent (PME)/sewage revealed that there was significant increase in the nickel (Ni, +227.17 %) content of the soil irrigated with PME, whereas in the soil irrigated with sewage chromium (Cr, +274.84 %), iron (Fe, +149.56 %), and cadmium (Cd, +133.39 %), contents were increased appreciably. The value of enrichment factor (EF) for Ni (3.27) indicated moderate enrichment in PME-irrigated soil. The EF of Fe, zinc (Zn), Cd, and Cr were <2 in PME effluent-irrigated soil which showed deficiency of minimal enrichment. In sewage irrigated soil, EF value for Cr, Fe, and Cd indicated moderate enrichment, while the values for Zn and Ni indicated deficiency of minimal enrichment. Among various metallic concentrations, the maximum concentration of Fe was observed in leaves (400.12?±?11.47 mg/kg) and root (301.41?±?13.14 mg/kg) of S. oleracea after irrigation with PME, whereas the maximum concentrations of Fe was found in leaves (400.49?±?5.97 mg/kg) and root (363.94?±?11.37 mg/kg) of S. oleracea after irrigation with sewage for 60 days. The bioaccumulation factor value was found maximum for Cd (2.23) in the plants irrigated with PME while that of Fe (0.90) in the plants irrigated with sewage. The undiluted use of PME/sewage for irrigation increased the concentration of Cr, Cd, Zn, Ni, and Fe metals which were accumulated in S. oleracea, posing a potential threat to human health from this practice of irrigation.  相似文献   

14.
The distribution and accumulation of heavy metals in the sediments, especially those nearest of wastewater discharges of south of Spain, were investigated. Sediment samples from 14 locations were collected and characterised for metal content (e.g. Ni, Cu, Zn, Cr, Pb, Mn, Cd and Hg), organic carbon, total nitrogen, total phosphorous, n-hexane-extractable material, carbonates and grain size. Concentration data were processed using correlation analysis and factor analysis. The correlation analysis of concentrations data showed important positive correlations among organic carbon, total phosphorus, Cu, Zn, Cd and Hg, otherwise weak correlations among Mn, Cr, Ni and CO3 2???, indicating that these metals have complicated geochemical behaviours. The use of statistical factor analysis also confirmed these results. Sediments pollution assessment was carried out using geoaccumulation and metal pollution indexes (MPI8). The results revealed that sediments of Cádiz bay and Sancti Petri channel were uncontaminated with the studied metals.  相似文献   

15.
The aim of this study was to determine the total metal accumulation (aluminium, copper, manganese, lead, cadmium and iron) in different organs and eggs of Astacus leptodactylus (Eschscholtz, 1823) and sediments total metal contents (aluminium, copper, manganese, lead, cadmium, iron, zinc, chromium, nickel) in Lake Terkos. Water and sediment samples were collected from two stations at two different depths (1 and 2 m) of Lake Terkos in May 2008. Crayfish samples were collected by trammel net at the same region. Primary hydrographic conditions, such as temperature (13.6–19.4°C), salinity (0.27–0.34‰), dissolved oxygen (7.04–12.30 mg l???1) and pH (7.42–8.51), were recorded for each sampling point. Moreover, the total organic carbon (1.65–5.44%) and the total calcium carbonate contents (19.44–41.16%) of sediment samples were determined. According to the Turkish Food Codex (J Zool 26:283–288, 2002), the maximum allowable Pb and Cd levels in crayfish are 0.5 mg/kg wet weight. Accordingly, the Pb and Cd levels determined in A. leptodactylus samples are below this limit. However, when compared with the acceptable metal limits defined by WHO, Australian National Health and Medical Research Council and Ministry of Agriculture in United Kingdom (UK), it is clear that the Cu level is at the limit and the Cd results exceed the limit. When the metal contents in sediment samples from Lake Terkos are examined, it is seen that the Al, Fe, Mn, Ni and Cu contents are lower while Zn, Cr, Cd and Pb contents are higher than the crustal average values. The high values draw attention to the land-based domestic and industrial inputs. Lake Terkos sediments have high enrichment factors (EF) of Zn, Cr, Cd and Pb metals which corroborate this result. The low EFs of Fe, Ni and Cu are due to the natural (terrigeneous) inputs. Additionally, there is no Al, Fe, Ni and Cu metal enrichment in these lake sediments because of the low contamination factor (CF) values. However, it is moderately contaminated by Zn, Cr and Pb, and heavily contaminated by Cd.  相似文献   

16.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

17.
The objective of this study was to assess the contamination level of trace metals in soil and vegetables and health risk to the urban population in Bangladesh. The range of Cr, Ni, Cu, As, Cd, and Pb in agricultural soils was 158–1160, 104–443, 157–519, 41–93, 3.9–13, and 84–574 mg/kg, respectively. Sequential extraction tests revealed that the studied metals were predominantly associated with the residual fraction, followed by the organically bound phase. Concerning Cu, Ni, Cd, and Pb in vegetables, more than 50 % samples exceeded the FAO/WHO recommended permissible limits. Considering the transfer of metals from soil to vegetables, Cu and Cd exhibited higher transfer factor (TF) values than the other metals. Target hazard quotient (THQ) for individual metal was below 1, suggesting that people would not experience significant health hazards if they ingest a single metal from vegetables. However, total metal THQ signifies the potential non-carcinogenic health hazard to the highly exposed consumers. The carcinogenic risk (TR) of As (1.9?×?10?4) and Pb (2.3?×?10?5) through consumption of vegetables were higher than the USEPA threshold level (10?6), indicating potential cancer risks.  相似文献   

18.
The contamination levels and ecological risks of heavy metals in the sediments of the Nansi Lake were investigated. The contents of Cd, Cr, Cu, Pb, Zn, Ni, and Co in the surface sediments collected at 20 sites ranged from 0.08 to 1.12, 58.92 to 135.62, 38.09 to 78.65, 24.51 to 53.95, 110.51 to 235.36, 11.30 to 65.40, and 4.12 to 20.14 mg/kg, respectively. The results of partitioning analysis revealed that the proportions of soluble and exchangeable fraction were less than 1 %, the proportions of carbonate, amorphous oxides, organic matter, and crystalline oxides fraction were less than 10 %, and 10.52 % of Cd was associated with carbonate. The average proportions in the residual fraction ranged from 48.62 % for Cu to 73.76 % for Ni, indicating low mobility and bioavailability. The geoaccumulation index (I geo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ) values of the heavy metals in the sediments were not in agreement with each another. The average REF values of Cd and Zn were higher than those of other metals. However, the average PECQ values were higher for Cr and Ni than those of other metals, indicating that these two metals would cause higher adverse biological effects. Therefore, it is suggested that future management and pollution control might focus on Cd, Zn, Cr, and Ni in the sediments of the Nansi Lake.  相似文献   

19.
The ambient PM10 and background soil samples were collected and analyzed with ICP-AES in eight cities around China to investigate the levels of ten heavy metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb). The mean concentrations of ten heavy metals in PM10 of the eight cities of China followed the order of Zn?>?Pb?>?Mn?>?Cu?>?Ni?>?Cr?>?Co?>?V. The metals in the ambient PM10 and soil were compared in each city to evaluate the heavy metal mass fraction from anthropogenic sources in ambient air. The CD values in these cities were all above 0.2, indicating that the ingredients spectrums of PM10 and soil vary markedly. Most heavy metals were enriched in PM10, except Fe and Ti. The results showed that almost all the cities suffer important heavy metal pollution from anthropogenic sources. The eight cities were also grouped according to their similarity in heavy metals of ambient PM10 by cluster analysis to investigate the relationship between the heavy metals and the pollution sources of each city. The conclusion was that the eight cities were divided into three clusters which had similar industrial type and economy scale: the first cluster consisted of Shenzhen, Wuxi, and Guiyang; followed by Jinan and Zhengzhou as the second grouping; and the third group had Taiyuan, Urumqi, and Luoyang.  相似文献   

20.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号