首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
BouIsmail (BIB) and Algiers (AB) are the most important bays in Algeria, where busy shipping activities and various industry complexes introduce different pollutants including heavy metals to the aquatic environment. The main goal of this study was to assess the contamination levels of heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in surface sediments and red mullet (Mullus barbatus) of the BIB and AB and to examine the possibility of the use of their enrichment factors (EFs) to track down the sources of metals (natural processes or human activity). The geoaccumulation index (I geo) was calculated as a criterion to indicate the contamination level for each heavy metal. Moreover, geographical information systems based on spatial analysis methods (inverse distance weighting (IDW)) and statistical approaches (the principal component (PCA)) were performed to assess the spatial influences of multiple anthropogenic sources in different sampled areas. The results of both EF and I geo revealed that the study area is exposed to various anthropogenic activities. The pollution load index (PLI) values of sediment samples in the different sites of Algiers and BIB ranged from 0.2 to 3.4 illustrating highly contaminated sediments. Significant bioaccumulation of Cd, Cu, Hg, Pb, and Zn (bioaccumulation factor >100%) were observed in muscle and liver of red mullet, suggesting potential health risks through consuming this fish species.  相似文献   

2.
Heavy metals concentrations in surface sediments from Miyun Reservoir were determined to evaluate the pollution and identify the sources. The average content of metals in sediments from Miyun Reservoir followed the order Al>Fe>Ti>Mn>V>Zn>Cr>Ni>Cu>Pb>As>Cd>Hg, and the most mean values were lower than the globe average shale. Heavy metals concentrations at the inflow area of Baihe were higher than those at the inflow area of Chaohe. Heavy metals pollution assessment was carried out by factor enrichment (EF), geoaccumulation index (I geo), and potential ecological risk (RI). The EF values for all heavy metals except Hg, Cd, and Cr at several sites were lower than 3, suggesting low anthropogenic impact on the metals level. The I geo values of Pb indicated that half of the sites were unpolluted to moderately polluted and mainly located in the Baihe area of the reservoir. The RI showed that heavy metals of Miyun Reservoir were low potential risk, however, Hg approached or belonged to moderate ecological risk at sites of M5, M7, and M13. Correlation analysis and principal component suggested that Ni, Cu, V, Zn, Mn, Cr, Ti, and Pb were derived from soil erosion in upper reaches of the reservoir, while Fe, Cd, Hg, As, and partial Pb originated from anthropogenic sources, particularly industrial mining and gold tailings.  相似文献   

3.
A geochemical study of the bottom sediments of Lake Shinji and the River Ohashi in southwestern Japan was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing enrichment factor (EF), pollution load index (PLI), and geoaccumulation index (I geo). Present-day water quality was also assessed. Results showed that the water quality of Lake Shinji contrasts slightly between the upper and lower parts. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements and total sulfur (TS). Average abundances of As, Pb, Zn, Cu, Ni, and Cr in the Shinji sediments were 10, 29, 143, 27, 19, and 54 ppm, respectively, compared to 6, 18, 57, 16, 10, and 37 ppm in the river sediments. Based on the EF, PLI, and I geo, the lake sediments are moderately to strongly polluted with respect to As, moderately polluted with Pb, Zn, and Cr, and unpolluted with Cu and Ni. The high EF and I geo for As, Pb, and Zn in the lake sediments indicate that metal concentration has occurred in Shinji. Increases in the abundances of these metals are likely related to the fine-grained nature of the sediments, reducing conditions of the bottom sediments, enrichment in organic matter, and possibly a minor contribution from non-point anthropogenic sources. Trace metal contents are strongly correlated with Fe2O3 and TS, suggesting that Fe oxides and sulfides play a role in controlling abundances in the investigated areas.  相似文献   

4.
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.  相似文献   

5.
The aim of this study was to assess the pollution status of metals in sediments of Hara Biosphere Reserve using pollution indicators. For this purpose, sediment samples from nine locations were collected and characterized for metal content (Pb, Cr, Zn, Cu, and Fe) using the total digestion technique. Comparison of metal concentrations with that of sediment quality guidelines (SQGs) demonstrated no association with negative biological effects for Cu and Zn, while the values of Pb and Cr mainly illustrated to have association with negative biological effects. The results of the geo-accumulation index (I geo) indicated no contamination for Cr, Cu, Zn, and Fe, while the values of Pb demonstrated to have moderate contamination based on I geo values. The analysis of the enrichment factor (EF) showed no enrichment for Cu and Zn and minor enrichment for Pb and Cr. Similar results were also found for quantification of contamination (QoC) analysis, where the values of Cu and Zn demonstrated to have a geogenic source of contamination, while the values of Pb and Cr mainly illustrated to have an anthropogenic source of contamination. According to EF and QoC calculations, the values of Cu and Zn were derived mainly from natural processes and exposure of material from the earth’s crust, while the values for Pb and Cr were enriched by anthropogenic activities. The results of the contamination factor (C f i ) demonstrated low contamination levels for Fe, Cr, Zn, and Cu and moderate contamination levels for Pb. The pollution load index (PLI), showing the overall contamination of metals, demonstrated moderate pollution status in the study area.  相似文献   

6.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

7.
In this study, the longitudinal distribution of heavy metals (including As, Cd, Cr, Cu, Ni, Pb, and Zn) from sediment of a 70-km long canyon reservoir in Yunnan Province was investigated and their potential ecological risks were assessed. The results indicated that the concentration of all the detected metals in the sediments that was sampled near the dam was much higher than that sampled from upstream far from the dam. The geoaccumulation index (I geo) and contamination factors (CF) suggested that Cd was the most important contamination factor, followed by As and Zn, while the concentration of Cr, Cu, Ni, and Pb was at uncontaminated levels. Cd posed a high potential ecological risk in the sediment. Furthermore, potential ecological risk is significantly correlated with the distance from the dam.  相似文献   

8.
Twenty-one surface sediment samples were collected from Akkaya Dam. Heavy metal concentrations (Mo, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cr, As, V and Cd), grain size, organic carbon and carbonate contents were studied in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of dam. The sediments in the study area are mostly very fine sands. However, mud was observed in the northeast of the dam. Sediment pollution assessment was carried out using enrichment factor. The calculation of enrichment factors showed that Mo is depleted by 1.0 whereas Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr and Cd are enriched by 3, 5.4, 7, 2.7, 2.2, 3.4, 42.3, 2.1, 1.8 and 7.2, respectively. Relatively high concentrations heavy metals occurred in north (textile industry area) and east (Karasu River) due to enrichment controlled by anthropogenic wastes. The results of correlation analysis show low–medium positive and negative correlations among metals, grain size, carbonate contents and organic carbon and indicate that heavy metals in sediments of the Akkaya Dam have different anthropogenic sources.  相似文献   

9.
In an effort to assess the potential contamination and determine the environmental risks associated with heavy metals, the surface sediments in Liaodong Bay, northeast China, were systematically sampled and analyzed for the concentrations of Cu, Pb, Zn, Cr, Ni, As, and Hg. The metal enrichment factor (EF) and geoaccumulation index (I geo) were calculated to assess the anthropogenic contamination in the region. Results showed that heavy metal concentrations in the sediments generally met the criteria of China Marine Sediment Quality (GB18668-2002); however, both EF and I geo values suggested the elevation of Pb concentration in the region. Based on the effect-range classification (TEL-PEL SQGs), Cu, Pb, Ni, and As were likely to pose environment risks, and the toxic units decreased in the order: Ni?>?Pb?>?Cr?>?Zn?>?As?>?Cu?>?Hg. The spatial distribution of ecotoxicological index (mean-ERM-quotient) suggested that most of the surface sediments were “low–medium” priority zone. Multivariate analysis indicated that the sources of Cr, Ni, Zn, Cu, and Hg resulted primarily from parent rocks, and Pb or As were mainly attributed to anthropogenic sources. The results of this study would provide a useful aid for sustainable marine management in the region.  相似文献   

10.
The present study was done to assess the sources and the major processes controlling the trace metal distribution in sediments of Buckingham Canal. Based on the observed geochemical variations, the sediments are grouped as South Buckingham Canal and North Buckingham Canal sediments (SBC and NBC, respectively). SBC sediments show enrichment in Fe, Ti, Mn, Cr, V, Mo, and As concentrations, while NBC sediments show enrichment in Sn, Cu, Pb, Zn, Ni, and Hg. The calculated Chemical Index of Alteration and Chemical Index of Weathering values for all the sediments are relatively higher than the North American Shale Composite and Upper Continental Crust but similar to Post-Archaean Average Shale, and suggest a source area with moderate weathering. Overall, SBC sediments are highly enriched in Mo, Zn, Cu, and Hg (geoaccumulation index (Igeo) class 4–6), whereas NBC sediments are enriched in Sn, Cu, Zn, and Hg (Igeo class 4–6). Cu, Ni, and Cr show higher than Effects-Range Median values and hence the biological adverse effect of these metals is 20%; Zn, which accounts for 50%, in the NBC sediments, has a more biological adverse effect than other metals found in these sediments. The calculated Igeo, Enrichment Factor, and Contamination Factor values indicate that Mo, Hg, Sn, Cu, and Zn are highly enriched in the Buckingham Canal sediments, suggesting the rapid urban and industrial development of Chennai Metropolitan City have negatively influenced on the surrounding aquatic ecosystem.  相似文献   

11.
The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (Igeo), and a newly developed pollution index (Ipoll). Both EF and Igeo formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (Ipoll). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with Ipoll showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.  相似文献   

12.
Concentrations of selected heavy metals (Cd, Pb, Zn, Cu, Mn, and Fe) in surface sediments from 66 sites in both northern and eastern Mediterranean Sea–Boughrara lagoon exchange areas (southeastern Tunisia) were studied in order to understand current metal contamination due to the urbanization and economic development of nearby several coastal regions of the Gulf of Gabès. Multiple approaches were applied for the sediment quality assessment. These approaches were based on GIS coupled with chemometric methods (enrichment factors, geoaccumulation index, principal component analysis, and cluster analysis). Enrichment factors and principal component analysis revealed two distinct groups of metals. The first group corresponded to Fe and Mn derived from natural sources, and the second group contained Cd, Pb, Zn, and Cu originated from man-made sources. For these latter metals, cluster analysis showed two distinct distributions in the selected areas. They were attributed to temporal and spatial variations of contaminant sources input. The geoaccumulation index (I geo) values explained that only Cd, Pb, and Cu can be considered as moderate to extreme pollutants in the studied sediments.  相似文献   

13.
In the present investigation, bulk and chemical partitioning of elements (Cu, Mn, Ni, Zn, Fe, Ca) together with organic matter as a loss in ignition in the Qarechay River bed sediments have been studied. The concentration of metals in Qarechay River bed sediments is governed by the geological units of the study area. The study of anthropogenic portion shows that a small proportion of elemental concentration belongs to this phase. However, Mn has a large portion of anthropogenic sources (43 %). Also, Mn has a share of 13.6 % in sulfide fractions. This result indicates that Mn is a highly mobile element and can easily enter the water column. The presence of Mn in sulfide fraction might be indicative of initial stages of conversion of oxidation state into reduction in Qarechay River. Share of metals in anthropogenic portion is in the following order: Mn (43 %)?>?Cu (19 %)?>?Zn (10 %)?>?Ni (3 %)?>?Fe (0 %). Organic metallic bonds are not significantly present in the study area. Geochemical index (I geo), pollution index (I poll), enrichment factor (EF), and pollution load index (PLI) values are indicative of a clean environment throughout the river course. These values are in well agreement with results of chemical partitioning data. Eventually, based on the results of chemical partitioning, regional standard of elements for Qarechay River bed sediments has been established.  相似文献   

14.
This study is carried out to evaluate potentially toxic metal concentrations (As, Cd, Cr, Cu, Hg, Mo, Ni, Pb, and Zn) together with their spatial distribution, degree of pollution, and potential ecological risk in Kor river sediments (southwest Iran) using sediment quality guidelines, geoaccumulation index (I geo), Hakanson potential ecological risk index (RI), and standard methods of statistical analysis. The study area stretches some 140 km from the Drodzan Dam to Bakhtegan Lake, a stretch of river where different industrial and domestic activities (e.g., petrochemical complex, oil refinery, industrial meat processing complex, Marvdasht city sewage) and ecological value overlap with each other. Calculated geoaccumulation index indicate that 50 % of the stations are moderately to very extremely polluted. The potential ecological risk for nine investigated metals in Kor river is Hg (948)?>?Mo (51.9)?>?Ni (37.8)?>?Cd (29.8)?>?As (22)?>?Cu (16.6)?>?Pb (13.3)?>?Zn (3.3)?>?Cr (1). Results show that sediments in parts of Kor river sediments are heavily affected by effluents discharged from industrial plants and other parts are affected by agriculture and urban runoff from nearby lands. These phenomena may cause a risk of secondary water pollution under sediment disturbance and/or changes in the physical–chemical characteristics of the aquatic system.  相似文献   

15.
The article presents the results for enrichment of total trace metals (TTMs) from Pallikaranai salt marsh in South Chennai, a metropolis on the southeast coast of India. TTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, Sr, V, and Hg along with sediment texture, OC, and CaCO3 were analyzed in 36 surface sediments collected during August 2008 to recognize and observe the input of TTMs in the marsh from various sources in the city limits. In view of the rapid urbanization and industrialization in Chennai City, especially on the southern side, uncontrolled input of sewage, garbage, and industrial effluents into the Pallikaranai marsh land, the elevated concentrations are not surprising. The level of enrichment of TTMs has also increased by 20% to 60% for most of the elements when compared with all other ecosystems in the world as well as the nearby area. The results also indicate that the marshy region is more heavily contaminated with Cd, Hg, Cr, Cu, Ni, Pb, and Zn than other regions on the southeast coast of India. The Enrichment Factor, Contamination Factor, and I geo indexes are calculated, and these values are useful to assess the degree of pollution in sediments. The spatial distributions of TTMs are also controlled by other factors like geochemical, precipitation, and flocculation of particulate substances in the marsh. The results of the present study suggest the need for a regular monitoring and management program which will help to improve the quality of Pallikaranai pristine marsh land.  相似文献   

16.
The contamination levels and ecological risks of heavy metals in the sediments of the Nansi Lake were investigated. The contents of Cd, Cr, Cu, Pb, Zn, Ni, and Co in the surface sediments collected at 20 sites ranged from 0.08 to 1.12, 58.92 to 135.62, 38.09 to 78.65, 24.51 to 53.95, 110.51 to 235.36, 11.30 to 65.40, and 4.12 to 20.14 mg/kg, respectively. The results of partitioning analysis revealed that the proportions of soluble and exchangeable fraction were less than 1 %, the proportions of carbonate, amorphous oxides, organic matter, and crystalline oxides fraction were less than 10 %, and 10.52 % of Cd was associated with carbonate. The average proportions in the residual fraction ranged from 48.62 % for Cu to 73.76 % for Ni, indicating low mobility and bioavailability. The geoaccumulation index (I geo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ) values of the heavy metals in the sediments were not in agreement with each another. The average REF values of Cd and Zn were higher than those of other metals. However, the average PECQ values were higher for Cr and Ni than those of other metals, indicating that these two metals would cause higher adverse biological effects. Therefore, it is suggested that future management and pollution control might focus on Cd, Zn, Cr, and Ni in the sediments of the Nansi Lake.  相似文献   

17.
The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16?×?103 mg?kg?1, respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg?kg?1. Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.  相似文献   

18.
The aim of this study was to determine if high concentrations of any heavy metals exist in the sediment of Seyhan Dam reservoir to be considered toxic to the aquatic environment. Surface sediment samples from five stations in the Seyhan dam were collected quarterly from 2004 to 2005 and examined for metal content (Cr, Zn Cu, Mn, Cd, Fe, Ca, K, and Na), organic matter, and grain size. Correlation analyses showed that metal content of Seyhan dam sediment was affected by organic matter and grain size. The results have been compared with values given in the literature. The evaluation of the metal pollution status of the dam was carried out by using the enrichment factor and the geoaccumulation index. A comparison with sediment quality guideline values has also been made. Based on the enrichment factor, dam sediments were treated as a moderately severe enrichment with Cd and minor enrichment with Cr and Mn. The results of geoaccumulation index reveal that sediments of Seyhan Dam were strongly polluted in stations 1, 2, 4, and 5, and were moderately polluted in station 3 with Cd. Moreover, Cd and Cr concentrations in the sediments were above TECs except ERL for Cd.  相似文献   

19.
Marine sediments of the Gulf of Mannar (GoM), India are contaminated by potential toxic elements (PTEs) due to anthropogenic activities posing a risk to the existing fragile coral ecosystem and human health. The current study aimed to assess the distribution of PTEs (arsenic—As; cobalt—Co; copper—Cu, molybdenum—Mo; lead—Pb; and zinc—Zn) in marine sediments of different grain size fractions, viz., medium sand (710 μm), fine sand (250 μm), and clay (<63 μm) among the different coastal regions of Pamban, Palk Bay, and Rameswaram coasts of GoM, using grain size as one of the key factor controlling their concentrations. The concentrations of PTEs were measured in the different size fractions of sediment using inductively coupled plasma mass spectrophotometer. The order of accumulation of all PTEs in the three fractions was ranked as Zn > Cu > Pb > As > Co > Mo and in the three locations as Rameswaram > Palk Bay > Pamban. The concentration of PTEs in Palk Bay and Rameswaram coast was significantly different (P?<?0.05), when compared to Pamban coast. Measured geoaccumulation index (I geo) and contamination factor (CF) indicated significant enrichment of Co and Pb from Rameswaram coast when compared to other two coasts. Although the concentration of Co was low but the measured I geo and CF values indicated significant enrichment of this PTE in Rameswaram coast. The increased input of PTEs in the coastal regions of GoM signifies the need to monitor the coast regularly using suitable monitoring tools such as sediments to prevent further damage to the marine ecosystem.  相似文献   

20.
The purpose of this research work was to appraise extent of heavy metals in sediment and the degree to which its quality tainted seasonally and spatially in river Cauvery. In this study, heavy metals such as Fe, Zn, Ni, Mn, Pb, Cu, Co, Cd and Cr were analysed in sediments. Results were compared with sediment quality guidelines from various derived criteria. Twenty-five sampling points were selected based on geographical proximity of agricultural fields and industrial discharges; river-tributary confluence points; settlements located along the river bank; ritual and recreational activities. Sampling was done for the period of 3 years (2007 to 2009). Digestion of the samples was done by microwave-assisted digestion technique. Analysis was carried out using flame furnace atomic absorption spectrophotometer, and results are expressed in micrograms per gram. The mean concentration of Fe (11144 μg/g) followed by Mn (1763.3 μg/g), Zn (93.1 μg/g), Cr (389 μg/g), Ni (27.7 μg/g), Cu (11.2 μg/g), Pb (4.3 μg/g), Co (1.9 μg/g) and Cd (1.3 μg/g) remained within the levels of sediment quality guidelines. Multivariate statistical techniques such as principal component analysis and cluster analysis (CA) were employed to better comprehend the controlling factors of sediment quality and spatial homogeneity among the stations. The sediment geo-accumulation index (Igeo) showed maximum value of Cd (2.69) and least value of Mn (−1.44). The geo-accumulation class (Igeo class) was in the sequence as follows: Cd>Zn>Pb>Cr>Cu>Co>Ni>Fe>Mn. Negative total geo-accumulation indices (Itot) revealed that mean concentration of heavy metals in the river bed sediment are lower than their respective shale values. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. This study concludes that insignificant geo-accumulation with metals except Cd (moderate contamination), Pb and Zn (slight contamination) principally in downstream stretch may perhaps deteriorate the sediment quality due to intensification anthropogenic influences. It also proves that extent of existing metal concentrations in sediments of river Cauvery in Karnataka not exceeded the toxic limit, and there is no peril to the aquatic life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号