首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
The objective of this study was to characterize exhaust emissions from a series of handheld, 2-stroke small engines. A total of 23 new and used engines from model years 1981–2003 were studied; these engines spanned three phases of emission control (pre-control, phase-1, phase-2). Measured emissions included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC), fine particulate matter (PM2.5), and sulfur dioxide (SO2). Emissions reductions in CO (78%) and HC (52%) were significant between pre-control and phase-2 engines. These reductions can be attributed to improvements in engine design, reduced scavenging losses, and implementation of catalytic exhaust control. Total hydrocarbon emissions were strongly correlated with fuel consumption rates, indicating varying degrees of scavenging losses during the intake/exhaust stroke. The use of a reformulated gasoline containing 10% ethanol resulted in a 15% decrease in HC and a 29% decrease in CO emissions, on average. Increasing oil content of 2-stroke engine fuels results in a substantial increase of PM2.5 emissions as well as smaller increases in HC and CO emissions. Results from this study enhance existing emission inventories and appear to validate predicted improvements to ambient air quality through implementation of new phase-2 handheld emission standards.  相似文献   

2.
Environmental and economic evaluation of bioenergy in Ontario, Canada   总被引:1,自引:0,他引:1  
We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO2 equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial lightduty vehicle fleet emissions between 1.3 and 2.5 million t of CO2 equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO2 equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO2 equivalent). The economics of biomass cofiring benefits from existing capital, whereas the cellulosic ethanol scenario does not. Notwithstanding this result, there are several factors that increase the attractiveness of ethanol. These include uncertainty in crude oil prices, potential for marked improvements in cellulosic ethanol technology and economics, the province's commitment to 5% ethanol content in gasoline, the possibility of ethanol production benefiting from existing capital, and there being few alternatives for moderate-to-large-scale GHG emissions reductions in the transportation sector.  相似文献   

3.
Open-top chambers (OTCs) were used to evaluate the effects of moderately elevated O3 (40-50 ppb) and CO2 (+100 ppm) and their combination on N2O, CH4 and CO2 fluxes from ground-planted meadow mesocosms. Bimonthly measurements in 2002-2004 showed that the daily fluxes of N2O, CH4 and CO2 reacted mainly to elevated O3, while the fluxes of CO2 also responded to elevated CO2. However, the fluxes did not show any marked response when elevated O3 and CO2 were combined. N2O and CO2 emissions were best explained by soil water content and air and soil temperatures, and they were not clearly associated with potential nitrification and denitrification. Our results suggest that the increasing O3 and/or CO2 concentrations may affect the N2O, CH4 and CO2 fluxes from the soil, but longer study periods are needed to verify the actual consequences of climate change for greenhouse gas emissions.  相似文献   

4.
OBJECTIVES: This work assesses the contribution to climate change resulting from emissions of the group of halogenated greenhouse gases. METHODS: A bottom-up emission model covering 22 technological sectors in four major regions is described. Emission estimates for 1996 and projection for 2010 and 2020 are presented. The costs for deep cuts into projected emission levels are calculated. RESULTS: The substances covered by this study have contributed emissions of 1100 +/- 800 MT CO2 equivalents per year in 1996. In terms of their relative contribution to emissions of CO2 equivalents, this corresponds to 3 +/- 2% of global emissions of all anthropogenic greenhouse gases. The wide range of uncertainty is due to the poorly quantified net global warming potential of the ozone depleting substances, which have an indirect cooling effect on climate through the destruction of stratospheric ozone. For annual emissions of HFCs, PFCs and SF6 (which are regulated under the Kyoto Protocol and for which global warming potentials are well defined), the relative contribution is projected to increase to 2% (600 MT CO2 eq.) of global greenhouse gas emissions by 2010. This trend is expected to continue, emissions are projected to grow to a contribution of roughly 3% (870 MT CO2 eq.) in 2020 compared to 0.9% (300 MT CO2 eq.) in 1996. For HFCs, PFCs and SF6, this study identifies global emission reduction potentials of 260 MT CO2 eq. per year in 2010 and 640 MT CO2 eq. per year in 2020 at below US$ 50 per ton. These values correspond to roughly 40% and 75% of projected emissions in 2010 and 2020, respectively.  相似文献   

5.
Worldwide concerns about sulfur oxide (SOx) emissions from ships are motivating the replacement of marine residual oil (RO) with cleaner, lower-sulfur fuels, such as marine gas oil (MGO) and marine diesel oil (MDO). Vessel operators can use MGO and MDO directly or blended with RO to achieve environmental and economic objectives. Although expected to be much cleaner in terms of criteria pollutants, these fuels require additional energy in the upstream stages of the fuel cycle (i.e., fuel processing and refining), and thus raise questions about the net impacts on greenhouse gas emissions (primarily carbon dioxide [CO2]) because of production and use. This paper applies the Total Energy and Environmental Analysis for Marine Systems (TEAMS) model to conduct a total fuel cycle analysis of RO, MGO, MDO, and associated blends for a typical container ship. MGO and MDO blends achieve significant (70-85%) SOx emissions reductions compared with RO across a range of fuel quality and refining efficiency assumptions. We estimate CO2 increases of less than 1% using best estimates of fuel quality and refinery efficiency parameters and demonstrate how these results vary based on parameter assumptions. Our analysis suggests that product refining efficiency influences the CO2 tradeoff more than differences in the physical and energy parameters of the alternative fuels, suggesting that modest increases in CO2 could be offset by efficiency improvements at some refineries. Our results help resolve conflicting estimates of greenhouse gas tradeoffs associated with fuel switching and other emissions control policies.  相似文献   

6.
Anthropogenic and natural CO2 emission sources in an arid urban environment   总被引:2,自引:0,他引:2  
Recent research has shown the Phoenix, AZ metropolitan region to be characterized by a CO2 dome that peaks near the urban center. The CO2 levels, 50% greater than the surrounding non-urban areas, have been attributed to anthropogenic sources and the physical geography of the area. We quantified sources of CO2 emissions across the metropolitan region. Anthropogenic CO2 emission data were obtained from a variety of government and NGO sources. Soil CO2 efflux from the dominant land-use types was measured over the year. Humans and automobile activity produced more than 80% input of CO2 into the urban environment. Soil CO2 efflux from the natural desert ecosystems showed minimal emissions during hot and dry periods, but responded rapidly to moisture. Conversely, human maintained vegetation types (e.g. golf courses, lawns, irrigated agriculture) have greater efflux and are both temperature and soil moisture dependent. Landfills exhibited the most consistent rates, but were temperature and moisture independent. We estimate the annual CO2 released from the predominant land-use types in the Phoenix region and present a graphical portrayal of soil CO2 emissions and the total natural and anthropogenic CO2 emissions in the metropolitan region using a GIS-based approach. The results presented here do not mimic the spatial pattern shown in previous studies. Only, with sophisticated mixing models will we be able to address the total effect of urbanization on CO2 levels and the contribution to regional patterns.  相似文献   

7.
A forecast of expected evolution of carbon dioxide (CO(2)) emissions in Portugal between 1988 and 2010 is presented. Predictions show that CO(2) emissions will almost double in the next twenty years. The equivalent potential CO(2) emissions from nitrogen oxides (NO(x)) and volatile organic compounds (VOC), for a time horizon of 20 years, is also presented. NO(x) and VOC emissions seem to make a significant contribution to the global warming potential of Portuguese emissions. Estimates of CO(2) emissions due to forest fires have been made, oriented towards the study of the Portuguese contribution to the global warming. If the burned area exceeds 100 000 ha this contribution could reach 7% of the total Portuguese CO(2) emissions. The global warming potential of Portuguese forest emissions were also calculated. The climate change predicted to Portugal could be responsible for an increase in the forest fires and consequently for a greater contribution of its emissions to the total values. It was concluded that it is important to quantify emissions of the greenhouse gases, including the contribution of forest fire emissions, not only in Portugal, but in all the Southern European countries.  相似文献   

8.
Environmental Science and Pollution Research - This paper examines the long-term and short-term relationships between renewable energy consumption, output and export, and CO2 emissions in China...  相似文献   

9.
Environmental Science and Pollution Research - This paper investigates whether the impact of income on CO2 emissions is invariant to endogenously estimated threshold levels for the economic...  相似文献   

10.
Environmental Science and Pollution Research - Even though numerous studies explore the impact of macroeconomic variables on carbon dioxide (CO2) emissions, only a few existing studies estimate the...  相似文献   

11.
Environmental Science and Pollution Research - North Africa currently accounts for about 40% of Africa’s total CO2 emissions, and the industrial sector is one of the energy-intensive sectors...  相似文献   

12.
A nontrivial portion of heavy-duty vehicle emissions of NOx and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them accurately, and little quantitative data exist to evaluate the relative effectiveness of various policies. The objectives of this study were to quantify the effect of accessory loading and engine speed on idling emissions from a properly functioning, modern, heavy-duty diesel truck and to compare these results with data from earlier model year vehicles. It was found that emissions during idling varied greatly as a function of engine model year, engine speed, and accessory load conditions. For the 1999 model year Class 8 truck tested, raising the engine speed from 600 to 1050 rpm and turning on the air conditioning resulted in a 2.5-fold increase in NOx emissions in grams per hour, a 2-fold increase in CO2 emissions, and a 5-fold increase in CO emissions while idling. On a grams per gallon fuel basis, NOx emissions while idling were approximately twice as high as those at 55 mph. The CO2 emissions at the two conditions were closer. The NOx emissions from the 1999 truck while idling with air conditioning running were slightly more than those of two 1990 model year trucks under equivalent conditions, and the hydrocarbon (HC) and CO emissions were significantly lower. It was found that the NOx emissions used in the California Air Resources Board's (CARB) EMFAC2000 and the U.S. Environmental Protection Agency's (EPA) MOBILE5b emissions inventory models were lower than those measured in all of the idling conditions tested on the 1999 truck.  相似文献   

13.
Environmental Science and Pollution Research - This paper aims to examine the nexus among carbon dioxide (CO2) emissions, urbanization level and industrial structure in North China over the period...  相似文献   

14.
The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   

15.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

16.
Environmental Science and Pollution Research - Emerging economies are experiencing considerable economic changes due to change in energy demand and CO2 emissions. To explore the link between energy...  相似文献   

17.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   

18.
Environmental Science and Pollution Research - This study estimated unbalanced panel data analysis to investigate the relationship among CO2 emissions, GDP, renewable and non-renewable energy...  相似文献   

19.
GOAL, SCOPE AND BACKGROUND: [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. METHODS: A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30-40 cm.The CH4 efflux was computed from CO2 efflux and from the ratio CH4/CO2 in the soil gas. Soil gas samples were collected at a depth of 30-40 cm using a metallic probe and 20 cc hypodermic syringes, and later stored in evacuated 10 cc vacutainers for laboratory analysis of bulk composition. The gas sample was introduced in a vacutainer filled with deionized water and displacing the water until the vacutainer was filled with the gas sample in order to avoid air contamination from entering. The surface landfill temperature of the landfill was measured at a depth of 40 cm using a digital thermometer type OMEGA 871A. Landfill gases, CO2 and CH4, were analyzed within 24 hours using a double channel VARIAN micro-GC QUAD CP-2002P, with a 10 meter PORAPLOT-Q column, a TCD detector, and He as a carrier gas. The analysis temperature was 40 degrees C and the injection time was 10 msec. Surface landfill CO2 efflux measurements were performed using a portable NDIR spectrophotometer Licor-800 according to the accumulation chamber method (Chiodini et al. 1996). The data treatment, aimed at drawing the flux map and computing the total gas output, was based on the application of stochastic simulation algorithms provided by the GSLIB program (Deutsch and Journel 1998). RESULTS: Diffuse CH4 and CO2 efflux values range from negligible values up to 7,148 and 30,573 g m(-2) d(-1), respectively. The spatial distribution of the concentration and efflux of CO2, CH4 and soil temperature, show three areas of maximum activity in the landfill, suggesting a non-uniform pattern of diffuse degassing. This correlation between high emissions and concentration of CO2, CH4 and soil temperatures suggests that the areas of higher microbial activity and exothermic reactions are releasing CO2 and CH4 to the atmosphere from the landfill. Taking into consideration the spatial distribution of the CO2 and CH4 efflux values as well as the extension of the landfill, the Non-controlled emission of CO2 and CH4 to the atmosphere by the Lazareto's landfill are of 167 +/- 13.3 and 16 +/- 2.5 t d(-1), respectively. DISCUSSION: The patterns of gas flow within the landfill seem to be affected by boundary materials at the sides. The basalt layers have a low permeability and the gas flow in these areas is extensive. In this area, where a basalt layer does not exist, the flow gas diffuses toward the sea and the flux emissions at the landfill surface are lower. This behavior reflects the possible dissolution of gases into water and the deflection of gases towards the surface at the basalt boundary. The proximity to the sea, the installation of a palm tree garden and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. The introduction of sea water into the landfill and the type of boundary could be defining the superficial gas discharges. CONCLUSIONS: Results from this study indicate that the spatial distribution of Non-controlled emission of CO2 and CH4 at the Lazareto's landfill shows a non-uniform pattern of diffuse degassing. The northeast, central and northwest areas of the Lazareto's landfill are the three areas of high emissions and concentration of CO2 and CH4, and high temperatures. The correlation between high emissions and the concentration of CO2, CH4, and the high temperatures suggest that the areas of higher microbial activity and exothermic reactions are releasing more CO2 and CH4 to the atmosphere from the landfill. A high concentration of CO2 is probably due to the presence of methanotrophic bacteria in the soil atmosphere of the landfill. Patterns of gas flow within the landfill seem to be affected by boundary materials (basalt layers) of low permeability, and side boundaries of the flux emissions at the surface are higher. At the sides of seawater and sediment boundaries, flux emissions at the landfill surface are lower. This behavior reflects a possible dissolution of gases into the water and the deflection of gases towards the surface at the basalt boundary. With this study, we can compare the data obtained in this landfill with other landfills and observe the different levels of emission. The proximity to the sea and the installation of the palm tree garden palms and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. Many landfills worldwide located in similar settings could experience similar gas production processes. RECOMMENDATIONS AND PERSPECTIVES: The need for investigating and monitoring sea water and sediment quality in these landfills is advisable. Concentrations and fluxes of contaminants and their impact in the area should be assessed. With this study we can compare the data obtained in these landfills with other landfills and observe the different levels of emission.  相似文献   

20.
Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号