首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.  相似文献   

2.
The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.  相似文献   

3.
As the world’s leading manufacturing country, China has become the largest dumping ground for e-waste, resulting in serious pollution of heavy metals in China. This study reviews recent studies on environmental effects of heavy metals from the e-waste recycling sites in China, especially Taizhou, Guiyu, and Longtang. The intensive uncontrolled processing of e-waste in China has resulted in the release of large amounts of heavy metals in the local environment, and caused high concentrations of metals to be present in the surrounding air, dust, soils, sediments and plants. Though the pollution of many heavy metals was investigated in the relevant researches, the four kinds of heavy metals (Cu, Pb, Cd and Cr) from e-waste recycling processes attracted more attention. The exceedance of various national and international standards imposed negative effects to the environment, which made the local residents face with the serious heavy metal exposure. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations.  相似文献   

4.
Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of "building material not allowed". The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.  相似文献   

5.
During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.  相似文献   

6.
Heavy metals and toxic organic contaminants are found at numerous industrial and military sites. The generally poor performance of conventional pump‐and‐treat schemes has made the development of improved methods for contaminated site remediation a significant environmental priority. One such innovative method is cyclodextrin‐enhanced flushing of the contaminated porous media and groundwater. Cyclodextrin is a glucose‐based molecule that is produced on industrial scales by microorganisms. Over the last years, several cyclodextrin derivatives have received extensive research interest. It was shown that cyclodextrins can significantly enhance the solubility of toxic organics, and in some cases, heavy metals and radioactive isotopes. As a sugar, cyclodextrin is considered relatively non‐toxic to humans, plants, and soil microbes. Thus, there are minimal health‐related concerns associated with the injection of cyclodextrin into the subsurface, which is an inherent advantage for use of cyclodextrins as a remediation agent. This paper provides a review of the available literature concerning use of cyclodextrin for remediation of groundwater and soil.  相似文献   

7.
Medical waste from hospitals and other healthcare institutions has become an imperative environmental and public safety problem. Medical waste in Greece has become one of the most urgent environmental problems, because there are 14,000 tons produced annually, of which only a small proportion is incinerated. In the prefecture of Attica there is only one modern municipal medical waste incinerator (started 2004) burning selected infectious hospital waste (5-6 tons day(-1)). Fly and bottom residues (ashes) are collected and stored temporarily in barrels. High values of metal leachability prohibit the landfilling of these ashes, as imposed by EU directives. In the present study we determined quantitatively the heavy metals and other elements in the fly and bottom ashes of the medical waste incinerator, by inductively coupled plasma emission spectrometry (ICP) and by energy dispersive X-ray analysis (EDAX). Heavy metals, which are very toxic, such as Pb, Cd, Ni, Cr, Cu and Zn were found in high concentrations in both fly and bottom ashes. Metal leachability of fly and bottom ashes by water and kerosene was measured by ICP and the results showed that toxic metals in both ashes, such as Pb, Cr, Cd, Cu and Zn, have high leaching values. These values indicate that metals can become soluble and mobile if ash is deposited in landfills, thus restricting their burial according to EU regulations. Analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in fly and bottom ashes showed that their concentrations were very low. This is the first known study in Greece and the results showed that incineration of medical waste can be very effective in minimizing the most hazardous and infectious health-care waste. The presence of toxic metals with high leachability values remains an important draw back of incineration of medical waste and various methods of treating these residues to diminish leaching are been considered at present to overcome this serious technical problem.  相似文献   

8.
The present work undertaken in the environmental context aims to study the distribution of heavy metals in plants that grow naturally around uncontrolled landfills. The study's goal was to identify plants that can be used to remediate contaminated soils. For this purpose, 14 plants species and their rhizospheric soil samples were collected and analyzed for arsenic, cadmium, cobalt, chromium, copper, lead, nickel, and zinc by inductively coupled plasma‐atomic emission spectrometry. The results showed the presence of elevated metal concentrations in soil, many exceeding the regulatory values, and that many species exhibited an ability to accumulate multiple metals in their shoots and roots without sustaining toxicity. This was confirmed by bioconcentration and translocation factors generally higher than 1.  相似文献   

9.
In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector.  相似文献   

10.
Arbuscular mycorrhizal fungi (AMF) are microscopic fungi naturally occurring in soil that form a symbiosis with plant roots, producing a highly elaborated hyphal mycelium network in soil.In vitro lab experiments were conducted to determine whether extraradical mycorrhizal hyphae are directly involved in sequestration and uptake of essential zinc and nonessential cadmium by plant roots under toxic concentrations. The research is a continuation of an initial study presented in the Spring 2005 issue of Remediation that focused on the specific role of AMF in the speciation of heavy metals. Thus, this article presents a more expanded view. Results show that zinc and cadmium heavy metals are sequestered and translocated to plant roots via extraradical AMF hyphae. Root/growth media accumulation factors reached 5:1 and 18:1 for zinc and cadmium, respectively. Phytoremediation of heavy metal–contaminated soils can be enhanced by mycorrhizal inoculation. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
In order to explore the beneficial utilization of heavy oil fly ash (HOFA) generated in the power plants, the present study is intended to optimize the chromium(VI) [Cr(VI)] adsorption on activated carbon produced from HOFA. The raw HOFA obtained from a power plant was washed by nitric/hydrochloric acid and activated at 800 °C with a holding time of 60 min to produce fly ash activated carbon (FAC). Phosphoric acid was used as a chemical agent to improve the surface characteristics of the HOFA during the activation process. Batch adsorption experiments were employed to evaluate the effects of different parameters such as initial Cr(VI) concentration, pH, and FAC dose on the removal of Cr(VI) from aqueous solution. A total of 17 adsorption experimental runs were carried out employing the detailed conditions followed the response surface methodology based on the Box–Behnken design. The results indicate that developed FAC has the potential for removing Cr(VI) from wastewater. Under the test conditions, a maximum of 91.51 % Cr(VI) removal efficiency was achieved.  相似文献   

12.
An optimization of the air pollution control (APC) residue washing process was carried out to minimize the release of chloride and heavy metals. Taking into account economic parameters such as the consumption of water and reaction time, the best relation found was a S/L ratio of 1/3 during 1 h. At a laboratory scale and according to the values obtained for chloride and heavy metals, the APC residue is classified as non-special according to Catalonian Regulations (Spain). Moreover, the pH of the solution, when MgSO(4) is added during the washing process, may be controlled by the formation of gypsum. In these conditions, the concentration of heavy metals will decrease as a consequence of the formation of their respective insoluble hydroxides. Therefore, the counter-current batch washing process with the addition of small amounts of MgSO(4) is revealed as an economically feasible treatment of the APC residue. This washed residue is ready to be used as secondary material or to be landfilled safely.  相似文献   

13.
Over the years, many soils have been contaminated with toxic heavy metals as a result of a variety of industrial and military activities. Electrokinetic soil treatment is an emerging technology that could prove to be very effective in the remediation of these sites. “Real-world” heavy metal contaminated (Pb(II), Cd(II), and Cr(III)) soils from three military sites with varying soil properties were subjected to electrokinetic treatment in the laboratory. Metal extractants (chelating agents and acids) were studied and found to be effective in enhancing the electrokinetic process. Results indicated that heavy metal removal efficiencies varied in the three soils tested. In one case, removal efficiencies of 90 percent and 60 percent were obtained for Cd and Cr, respectively, for the nitric acid amended experiments. For another case, over 60 percent of the total Pb in the system was deposited near the cathode for the non-amended and the citric-acid amended tests. Conversely, in the third case, the electrokinetic soil-washing treatment process failed to produce significant removal of any metal contaminant. The discrepancies that exist between the metal removal results of the three soils were attributed to the different physiochemical characteristics of each soil.  相似文献   

14.
In the Summer 2004 issue of Remediation, the authors presented a study of the influence of buffering behavior in contaminated Andisol soil. This article, Part II, expands on this research by presenting the results of laboratory tests conducted to study the movement of heavy metals in contaminated Andisol soil during the first stage of an electrochemical remediation process. The analysis was performed on the soil after treatment and also on the washing solutions collected during the first four hours. In order to analyze the effectiveness of fast and simple techniques for monitoring the electroremediation process, computer‐aided modeling of speciation in the soil solution was performed in connection with the remediation treatment. The results show that the metals moved mainly as positive species in the soil and later occurred as insoluble forms relative to the pH value in the washing solution from the cathode chamber. © 2005 Wiley Periodicals, Inc.  相似文献   

15.
何俊  谢腾蛟  杨旅涵  程科 《化工环保》2012,40(4):388-395
以磷酸二氢钾(PDP)钝化后的重金属污染土壤为研究对象,通过室内土柱淋溶和土壤吸水实验,考察pH为3.1、4.6和5.1的模拟酸雨对污染土壤修复过程中重金属淋溶特征及土壤持水能力的影响。实验结果表明:PDP处理显著增加了淋出液的pH、电导率、TOC和正磷酸盐态磷(ZP)含量,在淋溶初期显著降低了淋出液的Cu、Cd和Pb含量,但在淋溶后期增大了Pb含量;土壤持水量与电导率、pH、TOC和ZP含量呈现极显著负相关性;土壤修复过程中,有机质的淋失、盐分含量及pH的增大可引起土壤持水能力的减弱。  相似文献   

16.
Most ashes contain a significant amount of heavy metals and when released from disposed or used ash materials, they can form a major environmental concern for underground waters. The use of water extracts to assess the easily mobilisable content of heavy metals may not provide an appropriate measure. This study describes the patterns of heavy metal release from ash materials in context with results from the German standard extraction method DIN-S4 (DIN 38 414 S4). Samples of four different ashes (municipal solid waste incineration ash, wood ash, brown coal ash and hard coal ash) were subjected to a number of serial batch tests with liquid renewal, some of which involved the addition of acid to neutralize carbonates and oxides. Release of heavy metals showed different patterns depending on the element, the type of material, the method of extraction and the type of the extractant used. Only a small fraction of the total heavy metal contents occurred as water soluble salts; of special significance was the amount of Cr released from the wood ash. The reaction time (1, 24 or 72 h between each extraction step with water) had only a small effect on the release of heavy metals. However, the release of most of the heavy metals was governed by the dissolution processes following proton inputs, indicating that pH-dependent tests such as CEN TC 292 or others are required to estimate long-term effects of heavy metal releases from ashes. Based on the chemical characteristics of ash materials in terms of their form and solubility of heavy metals, recommendations were made on the disposal or use of the four ash materials.  相似文献   

17.
The within-site correlations between soil respiration rates,lead (Pb), mercury (Hg) and cadmium (Cd) concentrations andorganic matter quality variables were investigated at four sites in southern Sweden. The aim was to study whether the within-site variation in heavy metal concentrations could beused to monitor biological effects of regional deposition of heavy metals. Two sites in the south-west, one in the mid-southof the country, and one in south-east were investigated. At the south-eastern, least contaminated, site there were no correlations between soil respiration rate, and either organicmatter quality variables or heavy metal concentrations. At the remaining sites, negative correlations were found between Pb andsoil respiration rate. However, at two of these three sites there was a covariation with cellulose that could account for these correlations. The within-site variation of pH and total nitrogen (N) was low, and did not show any correlative general trends with either respiration rate or heavy metals. Meta analysis showed that negative correlations between Pb or Hg, on the one hand, and cellulose or hemicellulose on the other weregenerally found in within-site investigations. However, this does not necessarily explain the correlation between Pb and soil respiration, as was shown for the southernmost site. A PLS model of soil respiration rates at this site, using allmeasured variables, including heavy metals, explained more variation than a model developed using only mor layer thickness,pH, carbohydrate, ash and nitrogen concentrations, as independent variables. Thus there is a risk of toxic effects from Pb even at the levels found in south-western Sweden today(>120 g Pb * g dw-1). However, since the correlationsbetween heavy metals and cellulose were not significantly different at the different sites, random sampling variation could not be ruled out as an explanation of the different results for the different sites. The causes of the correlationbetween organic matter quality and heavy metals have not yet been clarified. Analysis of mor samples incubated in thelaboratory for 2 yr with 1200 g Pb * g dw-1 or 5 gHg * g dw-1 did not show any differences in carbohydrate composition, compared to control samples. This shows that within-site studies of correlations between respiration rate and heavy metals have to be combined with studies of metal additions to soils and analysis of organic matter quality beforeany valid conclusions can be made.  相似文献   

18.
Application of MSWI fly ash on acid soil and its effect on the environment   总被引:1,自引:0,他引:1  
This study evaluated the feasibility of using municipal solid waste incinerator (MSWI) fly ash as acid soil amendment. In particular, changes in soil physicochemical properties and the potential environmental problems caused by the application of MSWI fly ash were investigated. The results showed that application of MSWI fly ash to the acid soil could raise the soil pH. The contents of rapidly available P and K, and slowly available K in the amended soil had a linear relationship with the addition ratio of MSWI fly ash. An addition of less than 20% of MSWI could raise the soil respiratory intensity after incubation for 3-5 days. Application of MSWI fly ash to the soil increased its content of water soluble salts and heavy metals, which could cause phytotoxicity in the plants. Therefore, the addition of MSWI fly ash to the soil should not be excessive, and less than 5-10% is an advisable addition level depending on the acidity of the soil and the plants growing on it.  相似文献   

19.
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China.  相似文献   

20.
Oil fly ash (OFA) contains environmentally toxic heavy metal and substituted polycyclic aromatic hydrocarbons. This review discusses the physical and chemical properties of OFA and presents information from other types of fly ash that can be used as concepts for the remediation and uses of OFA. Electrokinetic remediation is useful to remove some of the heavy metals for broader uses of the fly ash in agriculture, for making construction material, for contaminated wastewater treatment, and also for carbon dioxide sequestration. This review can be useful to develop approaches for the remediation and environmental management of OFA. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号