首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural clinoptilolite can be used as an ion exchanger for removal of heavy metals and treatment of environmental pollution because of its desirable characteristics of high ion exchange selectivity and resistance to different media. In this work, the potential of natural clinoptilolite from G?rdes mines (West Anatolia, Turkey) for the uptake of lead(II), nickel(II), copper(II), and zinc(II), from their single and mixed ion solutions, was evaluated using the batch method. The mineralogical and chemical properties of the sorption material were carried out by X-ray diffraction, X-ray fluoremetry, scanning electron microscopy, and wet analysis. Contact time, initial solution pH, solid-to-liquid ratio, and initial metal cation concentration were determined as single ion sorption parameters. The silicon/aluminum ratio and the theoretical and equivalent exchange capacities, both in single and mixed solutions, were established. Corresponding adsorption constants and distribution coefficients have been found.  相似文献   

2.
Copper (Cu) metabolism is altered in rats fed diets high in molybdenum (Mo) and low in Cu. This 10-week study was carried out to examine the effects of supplemental Mo (7.5–240 μg/g diet) on male Sprague–Dawley rats fed diets adequate in Cu (5 μg/g diet) and to determine the susceptibility of Mo-treated animals to the environmental pollutant 3,3′,4,4′-tetrabromobiphenyl (TBB). After 7 weeks of dietary treatment, half of the rats in each group received a single IP injection of TBB (150 μM/kg bw), while the other half received the corn oil vehicle. Rats sacrificed at 10 weeks showed no effects of Mo on growth, feed efficiency, or selected organ or tissue weights. Dose-dependent effects on plasma Mo (0–5.1 μg/mL), plasma Cu (0.95–0.20 μg/mL), and bone Cu (3.4–10 μg/g) in control through the high dose were found. Cu sequestration in the bone of Mo-treated rats is a new finding. TBB treatment resulted in dramatic weight loss and loss of absolute organ mass. Relative organ weights were increased, except for the thymus. TBB altered the concentrations of certain amino acids. Compared to control rats, this polybrominated biphenyl congener significantly decreased plasma Cu and ceruloplasmin at higher concentrations of dietary Mo and promoted the process of plasma Cu decrease by Mo, suggesting a combined effect.  相似文献   

3.
Distribution of radiotin (Sn113) in target organs and in the hepatic subcellular fractions was studied in sham and partially hepatectomised rats 72 hrs after the administration of tin (II) tartrate (2 mg Sn++, 10 uCi/100 gm body weight) intraperitoneally. The results indicate that in both the groups Sn113 was maximally accumulated in liver followed by kidney and spleen. Partially hepatectomised rat however accumulated less Sn113 in liver while an increase was observed in kidney. Subcellular studies showed significantly high affinity of tin for microsomes. A compartmental shift of radiotin from cytosol to microsomal fraction was observed in hepatectomised rats when compared to sham operated rats.  相似文献   

4.

Purpose

The objectives of this research are to identify the functional groups and determine corresponding pK a values of the acidic sites on dried brown algae Cystoseira barbata using FTIR and potentiometric titrations, and to investigate the biosorption ability of biomass towards divalent nickel, cadmium, and lead ions. Adsorption was studied as a function of solution pH and contact time, and experimental data were evaluated by the Langmuir isotherm model.

Methods

CaCl2 pretreatment was applied to the sorbent for enhancing the metal uptake capacity. The effect of solution pH on biosorption equilibrium was investigated in the pH range of 1.5?C5.0. Individual as well as competitive adsorption capacity of the sorbent were studied for metal cations and mixtures.

Results

The retention of the tested metal ions was mostly influenced from pH in the range of 1.5?C2.5, then stayed almost constant up to 5.0, while Ni(II) uptake showed the highest variation with pH. Potentiometric titrations were performed to find the number of strong and weak acidic groups and their acidity constants. The density of strong and weak acidic functional groups in the biomass were found to be 0.9 and 2.26?mmol/g, respectively. The FTIR spectra of the sorbent samples indicated various functionalities on the biomass surface including carboxyl, hydroxyl, and amino and sulphonate groups which are responsible for the binding of metal ions.

Conclusions

The capacity of the biomass for single metal ions (around 1?mmol/g) was increased to 1.3?mmol/g in competitive adsorption, Pb(II) showing the highest Langmuir intensity constant. Considering its extremely high abundance and low cost, C. barbata may be potentially important in metal ion removal from contaminated water and industrial effluents.  相似文献   

5.
Spent sorbents in water treatment processes have potential risks to the environment if released without proper treatment. The aim of this work was to investigate the potential regeneration of commercially prepared nano-TiO2 (anatase) for the removal of Pb (II), Cu (II), and Zn (II) by pH 2 and ethylenediaminetetraacetic acid (EDTA) solutions. The percent of metal adsorption/desorption decreased with the increasing number of regeneration cycles, and the extent of decrease varied for each metal. Competitive effects were observed for the adsorption/desorption of different metals when the nano-TiO2 was regenerated by EDTA solutions. Nano-TiO2 was able to treat simulated metal polluted water with greater than 94 % adsorption and greater than 92 % desorption after four cycles of regeneration using pH 2 solution. These results demonstrated that nano-TiO2 can be regenerated and reused using pH 2 solution compared to an EDTA solution for aquatic metal removal, which makes nanosorbents promising and economically and environmentally more attractive in the application of water purification.  相似文献   

6.
This study evaluates the behavior of coconut charcoal (AC) to adsorb Cr(VI), As(III), and Ni(II) in mono- and multicomponent (binary and ternary) systems. Batch experiments were carried out for mono- and multicomponent systems with varying metal ion concentrations to investigate the competitive adsorption characteristics. The adsorption kinetics followed the mechanism of the pseudo-second-order equation in both single and binary systems, indicating chemical sorption as the rate-limiting step of adsorption mechanism. Equilibrium studies showed that the adsorption of Cr(VI), As(III), and Ni(II) followed the Langmuir model and maximum adsorption capacities were found to be 5.257, 0.042, and 1.748 mg/g, respectively. In multicomponent system, As(III) and Ni(II) adsorption competed intensely, while Cr(VI) adsorption was much less affected by competition than As(III) and Ni(II). With the presence of Cr(VI), the adsorption capacities of As(III) and Ni(II) on AC were higher than those in single system and the metal sorption followed the order of Ni(II)?>?As(III)?>?Cr(VI). The results from the sequential adsorption–desorption cycles showed that AC adsorbent held good desorption and reusability.  相似文献   

7.
The effect of three species of hypoglycemic herbs (Termis, Halfa barr, or Kammun Quaramany) on the lipid profile was investigated in plasma and liver tissues of diabetic and herbs-treated diabetic rats. This profile includes total lipids (TL), triglycerides (TG), cholesterol, high-density lipoprotein (HDL) and low-density lipoprotein (LDL). A dose of 1.5 ml of aqueous suspension of each herb/100 g body weight (equivalent to 75 mg/100 g body weight) was orally administered daily to alloxan-diabetic rats for four weeks. The present study showed 2-fold increase (p<0.05) in the plasma glucose level of diabetic rats, which received alloxan as a single dose of 120 mg/kg body weight, relative to the mean value of control group. This elevated glucose level was restored to its normal level after treatment with any one of the three herbs. Furthermore, the levels of TL, TG, cholesterol, LDL and VLDL were significantly (p<0.05) increased in the plasma and the liver tissues of diabetic rats compared to the control group, whereas HDL level was significantly (p<0.05) decreased. The plasma levels of all above parameters were normalized after treatment of the diabetic rats with Kammun Quaramany. Treatment of diabetic rats with Tennis normalized TG, cholesterol, LDL and VLDL levels, but Halfa barr restored the induced levels of plasma cholesterol, LDL and HDL to their normal levels. On the other hand, treatment with any of the three herbal suspensions could not restore the concentrations of the all tested parameters in the liver. These data demonstrated that the glycemic control of any of the three herbal suspensions was associated with their hypocholesterolemic effects on the hypercholesterolemia of the alloxan-induced diabetic rats. Moreover, the Kammun Quaramany showed the most potent effect.  相似文献   

8.
Green rusts are mixed Fe(II)/Fe(III) hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH(3)COO, AuCl(n)(OH)(4-n), CuCl(2), or HgCl(2) showed that Ag(I), Au(III), Cu(II), and Hg(II) were readily reduced to Ag(0), Au(0), Cu(0), and Hg(0). Imaging of the resulting solids from the Ag(I)-, Au(III)-, and Cu(II)-amended green rust suspensions by transmission electron microscopy indicated the formation of submicron-sized particles of Ag(0), Au(0), and Cu(0). The facile reduction of Ag(I), Au(III), Cu(II), and Hg(II) to Ag(0), Au(0), Cu(0), and Hg(0), respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.  相似文献   

9.
Chen CY  Hamm JT  Hass JR  Albro PW  Birnbaum LS 《Chemosphere》2002,46(9-10):1501-1504
Pregnant Long Evans rats received 1.0 μg/kg of dioxin toxic equivalents (TEQ) by oral gavage on the 15th gestational day (GD 15), using a dosing mixture that contained two polychlorinated dioxins, four polychlorinated furans and three non-ortho polychlorinated biphenyls (PCBs). Rats were sacrificed on GD 16, GD 21 and postnatal day 4 (PND 4). The lipid content of fetus, pup, placenta and maternal liver, serum and adipose tissue were determined. Treated GD 16 and GD 21 fetuses had identical lipid content to the control group, yet the lipid content of treated pups on PND 4 was 32% higher than that of the control group. On the other hand, the lipid content of placenta, liver, and serum from the treated dams was 44–50%, 24%, and 38% lower than that of the control group, respectively. Thus, a low-dose mixture of dioxin-like compounds can cause changes in lipid content. The lipid content of offspring was not affected until they were exposed via lactation.  相似文献   

10.
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.  相似文献   

11.

Purpose

Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal.

Materials and methods

Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied.

Results

The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that biosorption of these metals was a surface process. The main functional groups involved in these processes were hydroxyl (–OH) and carboxylic groups (C=O) with 37, 52, and 31 and 21, 14, and 34 % removal of Pb(II), Cr(III), and Cd(II), respectively. Langmuir was the best model for a single system. While extended Langmuir was the best model for binary and ternary metal systems. The maximum uptake capacities were 54.92, 34.78, and 29.99 mg/g and pore diffusion coefficients were 7.23, 3.15, and 2.76?×?10?11 m2/s for Pb(II), Cr(III), and Cd(II), respectively. Optimum pH was found to be 4. Pseudo-second-order was the best model to predict the kinetic process. Biosorption process was exothermic and physical in nature.

Conclusions

Pb(II) offers the strongest component that is able to displace Cr(III) and Cd(II) from their sites, while Cd(II) ions are the weakest adsorbed component.  相似文献   

12.
Pregnant Long Evans rats received 1.0 μg/kg of dioxin toxic equivalents (TEQ) by oral gavage on the 15th gestational day (GD 15), using a dosing mixture that contained two polychlorinated dioxins, four polychlorinated furans and three non-ortho polychlorinated biphenyls (PCBs). Rats were sacrificed on GD 16, GD 21 and postnatal day 4 (PND 4). The lipid content of fetus, pup, placenta and maternal liver, serum and adipose tissue were determined. Treated GD 16 and GD 21 fetuses had identical lipid content to the control group, yet the lipid content of treated pups on PND 4 was 32% higher than that of the control group. On the other hand, the lipid content of placenta, liver, and serum from the treated dams was 44–50%, 24%, and 38% lower than that of the control group, respectively. Thus, a low-dose mixture of dioxin-like compounds can cause changes in lipid content. The lipid content of offspring was not affected until they were exposed via lactation.  相似文献   

13.
In this work Paspalum notatum root material was used to elucidate the influence of acid leaching pre-treatment and of sorption medium on metal adsorption. Ground P. notatum root was leached with 0.14M HNO(3). Leached root material (LRM) and non-leached root material (NLRM) were employed to flow sorption of Ni(II), Cu(II), Al(III) and Fe(III) in 0.5M CH(3)COONH(4) medium at pH 6.5. For LRM the sorption was also studied in 0.5M KNO(3) medium. The acid pre-treatment increased the sorption capacity (SC) for all ions studied. For the KNO(3) medium, Cu(II) and Fe(III) sorption was higher than in CH(3)COONH(4) and the type of the Ni(II) isotherm's model changed. The Freundlich model was the most representative isotherm model to describe metallic ions sorption. The (1)H NMR spectra showed differences between LRM and NLRM and the acid-basic potentiometric titration elucidated that acid-leaching procedure affected the root material sorption sites once only two predominant sorption sites were found for LRM (phenolic and amine, both able cations sorption) and five sorption sites (two carboxylic, amine and two phenolic) were founded for NLRM.  相似文献   

14.
The aim of this research was to expose individual removals of copper, chromium, nickel, and lead from aqueous solutions via biosorption using nonliving algae species, Chara sp. and Cladophora sp. Optimum pH values for biosorption of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions were determined to be 6, 7, 7, and 3 for Cladophora sp. and 5, 3, 5, and 4 for Chara sp. respectively. Maximum adsorption capacities of Chara sp. [10.54 for chromium (III) and 61.72 for lead (II)] and Cladophora sp. [6.59 for chromium (III) and 16.75 and 23.25 for lead (II)] for chromium (III) and lead (II) are similar. On the other hand, copper (II) and nickel (II) biosorption capacity of Cladophora sp. [14.28 for copper (II) and 16.75 for nickel (II)] is greater than Chara sp. [6.506 for copper (II) and 11.76 for nickel (II)]. Significantly high correlation coefficients indicated for the Langmuir adsorption isotherm models can be used to describe the equilibrium behavior of copper, chromium, nickel, and lead adsorption onto Cladophora sp. and Chara sp.  相似文献   

15.
The purpose of this study is to investigate the bio-accumulation of Cd(II), Cu(II), Pb(II) and Zn(II) in Pittosporum tobira (Thunb.) Aiton leaves sampled in different zones of Messina, in order to assess the level of atmospheric metal deposition in correlation with the traffic volume. Derivative stripping chronopotentiometry was used as a practical, precise and sensitive technique to determine simultaneously Cd, Cu, Pb and Zn levels in Pittosporum leaves. In the optimised electro-chemical conditions, detection limits lower than 0.05 microg kg(-1) were achieved, whereas the accuracy, expressed as obtained recoveries from certified materials, was in the range 93.5-102.7%. The obtained data provided evidence that Cd and Pb levels significantly decreased from high to low traffic density zones (p < 0.005, ANOVA), whereas Cu and Zn are accumulated by plants particularly from the soil and their contents is not related to the traffic volume.  相似文献   

16.
Sugarcane bagasse and hydroponic lettuce roots were used as biosorbents for Cu(II), Fe(II), Zn(II), and Mn(II) removal from monoelemental solutions in aqueous medium, at pH 5.5, using batch procedures. These biomasses were studied in natura (lettuce roots, NLR, and sugarcane bagasse, NSB) and modified with HNO3 (lettuce roots, MLR, and sugarcane bagasse, MSB). Langmuir, Freundlich, and Dubinin-Radushkevich non-linear isotherm models were used to evaluate the data from the metal ion adsorption assessment. The maximum adsorption capacities (qmax) in monoelemental solution, calculated using the Langmuir isothermal model for Cu(II), Fe(II), Zn(II), and Mn(II), were respectively 24.61, 2.64, 23.04, and 5.92 mg/g for NLR; 2.29, 16.89, 1.97, and 2.88 mg/g for MLR; 0.81, 0.06, 0.83, and 0.46 mg/g for NSB; and 1.35, 2.89, 20.76, and 1.56 mg/g for MSB. The Freundlich n parameter indicated that the adsorption process was favorable for Cu(II) uptake by NLR; Fe(II) retention by MLR and MSB; and Zn(II) sorption by NSB, MLR, and NSB and favorable for all biomasses in the accumulation of Mn(II). The Dubinin-Radushkevich isotherm was applied to estimate the energy (E) and type of adsorption process involved, which was found to be a physical one between analytes and adsorbents. Organic groups such as O–H, C–O–C, CH, and C=O were found in the characterization of the biomass by FTIR. In the determination of the biomass surface charges by using blue methylene and red amaranth dyes, there was a predominance of negative charges.  相似文献   

17.
Liu R  Zhao D 《Chemosphere》2007,68(10):1867-1876
This study tested the feasibility of using a new class of iron phosphate (vivianite) nanoparticles synthesized using sodium carboxymethyl cellulose (NaCMC) as a stabilizer for in situ immobilization of Cu(II) in soils. Transmission electron microscopy measurements demonstrated that the particle size was about 8.4+/-2.9 nm. Batch tests showed that nano-sized vivianite particles can effectively reduce the leachability and in vitro bioaccessibility of Cu(II) in three representative soils (calcareous, neutral, and acidic) at the low doses of 0.61 and 3.01 mg PO(4) g(-1) soil. The Cu leachability was evaluated by the toxicity characteristic leaching procedure and in vitro bioaccessibility was evaluated by the physiological based extraction test. In the case of soil amendment with nanoparticles in 3.01 mg PO(4) g(-1) soil, Cu leachability reduced 63-87% and Cu concentrations in TCLP extract decreased from 1.74-13.33 mg l(-1) to 0.23-2.55 mg l(-1) after those soils were amended for 56 d. Meanwhile, the bioaccessibility of Cu was reduced by 54-69%. Sequential extraction procedures showed the significant decrease of water soluble/exchangeable Cu(II) and carbonate bound fractions and concomitant increase of Cu residual fraction after the soils were amended with the nanoparticles, suggesting that the formation of copper phosphate minerals through precipitation and adsorption was probably responsible for the decrease of Cu availability in soils. Visual MINTEQ modeling further revealed that Cu(3)(PO(4))(2) and Cu(5)(PO(4))(3)OH were formed in the vivianite-solid Cu(II) system, resulting in the decreased solubility of the Cu(II) in the acidic pH range.  相似文献   

18.
The potential of triethylenetetramine (TETA) to inhibit the oxidation of three pyrrhotites, Garson, McCreedy and Po-97 has been studied systematically and confirmed by comparing the release of Fe and SO4(2-) from samples with and without coating treatment. Each sample, original or coated by TETA, was exposed to oxygen, 1 x 10(-3) M FeCl3, and Acidithiobacillus ferrooxidans, respectively, for specific oxidation periods. Both abiotic and biotic oxidation of samples treated by this passivating agent has been reduced significantly in this study. Under the aerobic condition, lower concentrations of ferric, total Fe or SO4(2-) were obtained from the coated samples than those from the uncoated samples. In the presence of 1 x 10(-3) M FeCl3 at 30 degrees C, TETA was able to reduce oxidation rates of Garson, McCreedy and Po-97 by 83%, 79%, and 81% (based on Fe release), respectively. A higher pH, lower Eh, and lower concentrations of total Fe and SO4(2-) were also observed in the biotic oxidation of coated Garson by Acidithiobacillus ferrooxidans. The protection of pyrrhotite surface from oxidant attack by TETA barrier and the alkaline property of this coating agent can be used to interpret the inhibition of oxidation.  相似文献   

19.
The purpose of this study is to compare the relative contribution of different mechanisms to the enhanced adsorption of Cu(II), Pb(II) and Cd(II) by variable charge soils due to incorporation of biochars derived from crop straws. The biochars were prepared from the straws of canola and peanut using an oxygen-limited pyrolysis method at 350 °C. The effect of biochars on adsorption and desorption of Cu(II), Pb(II) and Cd(II) by and from three variable charge soils from southern China was investigated with batch experiments. Based on the desorption of pre-adsorbed heavy metals, the electrostatic and non-electrostatic adsorptions were separated. EDTA was used to replace the heavy metals complexed with biochars and to evaluate the complexing ability of the biochars with the metals. The incorporation of biochars increased the adsorption of Cu(II), Pb(II) and Cd(II) by the soil; peanut straw char induced a greater increase in the adsorption of the three metals. The increased percentage of Cd(II) adsorption induced by biochars was much greater than that for the adsorption of Cu(II) and Pb(II). Cu(II) adsorption on three variable charge soils was enhanced by the two biochars mainly through a non-electrostatic mechanism, while both electrostatic and non-electrostatic mechanisms contributed to the enhanced adsorption of Pb(II) and Cd(II) due to the biochars. Peanut straw char had a greater specific adsorption capacity than canola straw char and thus induced more non-electrostatic adsorption of Cu(II), Pb(II) and Cd(II) by the soils than did the canola straw char. The complexing ability of the biochars with Cu(II) and Pb(II) was much stronger than that with Cd(II) and thus induced more specific adsorption of Cu(II) and Pb(II) by the soils than that of Cd(II). Biochars increased heavy metal adsorption by the variable charge soils through electrostatic and non-electrostatic mechanisms, and the relative contribution of the two mechanisms varied with metals and biochars.  相似文献   

20.
Radionuclide sorption by natural and modified clays is extensively accepted to be an important process from the radioactive waste point of view. This work focused on modification of natural attapulgite with a layered double hydroxide to produce a novel chemisorbent for Sr2+, Ni2+, and Co2+ removal from multicomponent solution. The structural and surface characteristics of both attapulgite (ATP) and modified attapulgite (LDH-ATP) were investigated using XRD, FTIR, SEM, and thermal analysis. Comparison of sorption features of Sr2+, Ni2+, and Co2+ onto ATP and LDH-ATP was achieved; the results indicated that LDH-ATP was the most efficient sorbent for Sr2+, Ni2+, and Co2+. Kinetic studies established that the sorption is fast and reaching >90% within 30 min. The sorption of Sr2+, Ni2+, and Co2+ are well defined by non-linear pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity was determined using homogeneous surface diffusion (HSDM) model and found in the order 10−13 m2/min; this confirmed that the sorption of the three ions is chemisorption process. LDH-ATP can be employed as a candidate chemisorbent for the removal of some metal ions from waste solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号