首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
废物处理   2篇
基础理论   3篇
污染及防治   4篇
评价与监测   2篇
  2022年   2篇
  2021年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有11条查询结果,搜索用时 343 毫秒
1.
The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically. This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect. Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current. Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations. When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition. In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity. However, the scale effect would be relatively modest. The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation. Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity. Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents. The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously.  相似文献   
2.
A total of 200 Jordanian children were classified into two groups: 100 Fe replete and 100 Fe deficient with ages ranging between 3.0 and 12.0 years (6.9 ± 2.7 years). All participants were chosen according to proper selection criteria followed by the sample collection: the samples were analyzed for hemoglobin and red blood cells; ferritin, an immunoassays-based instrument; and levels of Pb, Cu, and Zn. There were no significant differences between genders regarding Fe-deficiency (p = 0.57 and χ2 = 0.33), with a significant association of younger individuals (3.0–9.1 years) with Fe-deficiency (p < 0.05 and χ2 = 22.7).

In addition, there is a significant positive correlation between Fe-deficiency with blood levels of Pb, Cu, and Zn (p < 0.05), (r = 0.43, 0.35, and 0.42, respectively) as compared to control group, this findings supported, by comparing the levels of the examined metals in both groups, in individuals whom close to heavy metals source (highway traffic or oil gas station), and found that the mean of the heavy metals level in close Fe-deficient group higher than in close Fe-replete group.  相似文献   
3.
A new mathematical model has been developed that expresses the toxicities (EC50 values) of a wide variety of ionic liquids (ILs) towards the freshwater flea Daphnia magna by means of a quantitative structure-activity relationship (QSAR). The data were analyzed using summed contributions from the cations, their alkyl substituents and anions. The model employed multiple linear regression analysis with polynomial model using the MATLAB software. The model predicted IL toxicities with R2 = 0.974 and standard error of estimate of 0.028. This model affords a practical, cost-effective and convenient alternative to experimental ecotoxicological assessment of many ILs.  相似文献   
4.
Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined.  相似文献   
5.
Journal of Polymers and the Environment - In this study, we have developed a simple technique to prepare cationic chitosan hydrogel with interconnected porous structure using freeze–thaw...  相似文献   
6.
Journal of Polymers and the Environment - The cyclic carbonates as non-isocyanate polyurethane (NIPU) precursors are usually prepared via CO2 fixation under harsh conditions for a satisfactory...  相似文献   
7.
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.  相似文献   
8.
The curvature-driven secondary flow in sinuous submarine channels has been a subject of considerable interest and controversy. Here, results from numerical model studies involving saline flow in laboratory-scale channels are presented. A 3D finite volume model of density and turbidity currents is used and simulations are run with different inflow discharges and channel-axis slopes. The simulation results show strong influence of bend wave length, channel gradient, confinement and cross sectional shape on the structure of secondary flow in submarine channels. Major findings are: (i) reversal of secondary flow in submarine channels is strongly associated with a tight bend characterized by a smaller wave length to width ratio or larger wave number, (ii) for the same inflow condition and planform characteristics, a trapezoidal channel cross section is more favorable to secondary flow reversal than a rectangular cross section, (iii) lateral convection resulting from the interaction between in-channel and overbank flows leads to the reversal of secondary flow in an unconfined channel at a lower channel slope than in a confined channel with the same dimensions, (iv) flow discharge has only nominal effect on the secondary flow in submarine channels.  相似文献   
9.
Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens.  相似文献   
10.

Purpose

Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal.

Materials and methods

Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied.

Results

The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that biosorption of these metals was a surface process. The main functional groups involved in these processes were hydroxyl (–OH) and carboxylic groups (C=O) with 37, 52, and 31 and 21, 14, and 34 % removal of Pb(II), Cr(III), and Cd(II), respectively. Langmuir was the best model for a single system. While extended Langmuir was the best model for binary and ternary metal systems. The maximum uptake capacities were 54.92, 34.78, and 29.99 mg/g and pore diffusion coefficients were 7.23, 3.15, and 2.76?×?10?11 m2/s for Pb(II), Cr(III), and Cd(II), respectively. Optimum pH was found to be 4. Pseudo-second-order was the best model to predict the kinetic process. Biosorption process was exothermic and physical in nature.

Conclusions

Pb(II) offers the strongest component that is able to displace Cr(III) and Cd(II) from their sites, while Cd(II) ions are the weakest adsorbed component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号