首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Twelve suspected former secondary lead smelting sites were investigated. Ten of the sites were confirmed to be former secondary lead smelters or lead works by historical fire insurance maps and contemporaneous metal industry trade directories. At eight sites sampled, the ratio Sb:Pb was closer to ratios from 10 known lead smelting sites than were the As:Pb and Cd:Pb ratios. Data from the 10 known lead smelting sites showed that the Sb:Pb ratio is most characteristic of secondary lead smelting sites. This is because the primary alloy smelted at such sites is antimonial lead. Lead contamination at the eight sites investigated here can be attributed At least in part to the former smelters because of the association between Sb and Pb.  相似文献   

2.
The application of extracting aqueous solutions with cyclodextrins in several soil remediation technologies has been increasingly studied but little is known about their removal capacities toward the inorganic species. Herein, the effectiveness of cyclodextrins (CDs) in extracting arsenic, copper, and iron from a mining soil is presented. In a preliminary test of four types of CD aqueous solutions, only the addition of carboxylmethyl-beta-cyclodextrin CMCD (a cyclodextrin derivative) led to a significant enhancement in arsenic removal. An increase in the concentration of copper and iron in the leachates was also observed with CMCD. Kinetic study of arsenic release was carried out at two temperatures (20 and 35 degrees C). The arsenic concentration in the leachates increases with increasing cyclodextrin concentration. At an 80 mM CMCD concentration, arsenic, copper, and iron released in filtrates were about 20-, 1,000-, and 4,000-fold greater, respectively, than that obtained using deionized water. In the soil system, the CMCD capacity removal was found to be higher for cations than for arsenic. Because the tetrachlorophenol can co-occur with arsenic and copper in several contaminated sites, its solubilization by CMCD was also investigated. Extraction experiments were performed to extract 2,3,4,6 tetrachlorophenol (TeCP) in spiked soil with CMCD. The results of batch experiments have shown that CMCD could significantly increase the TeCP extraction from soil. CD sorption on soils as quantified by a fluorescence technique was low, indicating no significant loss of CD during the leaching experiments. The use of CMCD as a flushing agent to enhance the removal of both inorganic and organic pollutants from mixed-contaminated soils appears as a promising remediation method.  相似文献   

3.
This review focuses on the occurrence and treatment of arsenic (As) in the arid region of northern Mexico (states of Chihuahua and Coahuila) and bordering states of the southwestern US (New Mexico, Arizona, and Texas), an area known for having high As concentrations. Information assembled and assessed includes the content and probable source of As in water, soil, and sediments and treatment methods that have been applied in the area. High As concentrations were found mainly in groundwater, their source being mostly from natural origin related to volcanic processes with significant anthropogenic contributions near mining and smelting of ores containing arsenic. The affinity of As for solid phases in alkaline conditions common to arid areas precludes it from being present in surface waters, accumulating instead in sediments and shifting its threat to its potential remobilization in reservoir sediments and irrigation waterways. Factors such as oxidation and pH that affect the mobility of As in the subsurface environment are mentioned. Independent of socio-demographic variables, nutritional status, and levels of blood lead, cognitive development in children is being affected when exposed to As. Treatments known to effectively reduce As content to safe drinking water levels as well as those that are capable of reducing As content in soils are discussed. Besides conventional methods, emergent technologies, such as phytoremediation, offer a viable solution to As contamination in drinking water.  相似文献   

4.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   

5.
The phytoavailabilities and potential remobilization of potentially toxic elements (PTEs) such as Zn, Pb, Cd, As, and Sb were assessed in contaminated technosols from former mining and smelting sites. The PTE concentrations in soil pore water (SPW) and diffusive gradients in thin films (DGT)-measured concentration (C DGT) methods were used to assess the bioavailabilities of PTE and their remobilization in this study. Together with classical Chelex-100 DGT probes to measure Zn, Cd, and Pb, novel ferrihydrite-backed DGT were used for As and Sb measurements alongside with Rhizon soil moisture sampler method for SPW sampling. To assess the phytoavailabilities of PTE, a germination test with dwarf beans as a plant indicator was used for this purpose. Dwarf bean primary leaves showed high Zn concentrations in contrast to Pb and Cd which showed low phytoavailabilities. Despite As and Sb are present in high concentrations in the mine tailings, their phytoavailabilities indicate very low bioavailabilities. The amounts of Zn, Pb, Cd, As, and Sb extracted with DGT devices correlated well with the total dissolved PTE concentrations in the SPW. The highest R values were observed for Zn, followed by Cd and Pb, indicating the ability of the soil to sustain SPW concentrations, which decreased in that order. Good correlations were also observed between each of dissolved PTE concentrations in SPW, DGT-measured PTE concentrations (C DGT), and the accumulation of PTE in dwarf bean primary leaves. It could be concluded that the use of Rhizon soil moisture samplers and DGT methods may be considered to be a good methods to predict the PTE bioavailabilities in contaminated technosols.  相似文献   

6.
In Vietnam, Nicotex's site is perhaps the most infamous case of illegal disposal of toxic pesticides near residential areas. In 2013, affected villagers discovered illegal burials of around 1,000 tons of expired pesticides in the Nicotex factory. Organic pesticides were detected in illegal burial areas (IBAs) around 60 times greater than acceptable levels, but no attention was paid to contamination of metals, metalloids, and other classes of organic contaminants, which could be co-contaminants in pesticide formulation. This study assessed the contaminants remaining in the IBAs and surrounding residential areas two years after the source removal conducted in 2014. Additionally, a preliminary health risk assessment from residual contaminants was performed. Nine classes of chemicals including parental pesticides, inorganic and organic degradation byproducts, and metals and metalloids, comprising 123 chemicals were quantified in soil, sediment, and water samples from Nicotex and surrounding residential areas. Although concentrations of organic pesticides were below acceptable levels, arsenic contamination in the soil in a Nicotex IBA named NCT5 and Nap village (NV) exceeded the acceptable level. The enrichment factor and log-probability plot indicate that arsenic enrichment at NV is not from natural sources but is associated with arsenic contamination in NCT5. Arsenic may be a co-contaminant in pesticide manufacturing or an arsenical pesticide, such as monosodium methanearsonate. Arsenic found in NV was toxic arsenate for which the preliminary risk assessment yielded an unacceptable excess carcinogenic risk (1 × 10?4). While all attention was paid to investigate and treat contamination of organic pesticides, it turns out that arsenic is the major existing threat which poses an unacceptable cancer risk in good agreement with the high cancer rate claimed by villagers near Nicotex. This justifies the need for further investigation of the extent of the arsenic contamination and restoration of the contaminated land.  相似文献   

7.
Patterns of soil copper contamination have been examined in the vicinity of a copper rod rolling plant in Prescot, Merseyside, UK. The site, established in 1975, was found to possess clear patterns of soil copper contamination, with the highest levels of HNO3 and water-extractable fractions encountered in the factory grounds adjacent to the location of the furnace chimney. The majority of the copper had accumulated in the upper soil horizons. The site is surrounded by planted lawns, established at different times after the commissioning of the plant. The species composition of the extant grassland communities, found at sites with differing soil copper levels, was compared to the composition of the original seed mixtures sown at each of ten sites. These surveys clearly showed that different levels of soil copper contamination had produced significant changes in grassland composition with time. At the most polluted site, copper tolerant Agrostis capillaris clones were the main grasses present only two years after the area was sown with a four-species mixture of non-tolerant grass seed. Lolium perenne possessed extreme sensitivity to copper. A number of dicotyledonous species, normally considered sensitive to elevated copper levels, were found to be unaffected where such conditions had arisen after plants had established from seed.  相似文献   

8.
Arsenic can be highly toxic to mammals but there is relatively little information on its transfer to and uptake by free-living small mammals. The aim of this study was to determine whether intake and accumulation of arsenic by wild rodents living in arsenic-contaminated habitats reflected environmental levels of contamination and varied between species, sexes and age classes. Arsenic concentrations were measured in soil, litter, wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) from six sites which varied in the extent to which they were contaminated. Arsenic residues on the most contaminated sites were three and two orders of magnitude above background in soil and litter, respectively. Arsenic concentrations in the stomach contents, liver, kidney and whole body of small mammals reflected inter-site differences in environmental contamination. Wood mice and bank voles on the same sites had similar concentrations of arsenic in their stomach contents and accumulated comparable residues in the liver, kidney and whole body. Female bank voles, but not wood mice, had significantly higher stomach content and liver arsenic concentrations than males. Arsenic concentration in the stomach contents and body tissues did not vary with age class. The bioaccumulation factor (ratio of arsenic concentration in whole body to that in the diet) in wood mice was not significantly different to that in bank voles and was 0.69 for the two species combined, indicating that arsenic was not bioconcentrated in these rodents. Overall, this study has demonstrated that adult and juvenile wood mice and bank voles are exposed to and accumulate similar amounts of arsenic on arsenic-contaminated mine sites and that the extent of accumulation depends upon the level of habitat contamination.  相似文献   

9.
Field samples and a 9-week glasshouse growth trial were used to investigate the accumulation of mining derived arsenic (As) and antimony (Sb) in vegetable crops growing on the Macleay River Floodplain in Northern New South Wales, Australia. The soils were also extracted using EDTA to assess the potential for this extractant to be used as a predictor of As and Sb uptake in vegetables, and a simplified bioaccessibility extraction test (SBET) to understand potential for uptake in the human gut with soil ingestion. Metalloids were not detected in any field vegetables sampled. Antimony was not detected in the growth trial vegetable crops over the 9-week greenhouse trial. Arsenic accumulation in edible vegetable parts was <10 % total soil-borne As with concentrations less than the current Australian maximum residue concentration for cereals. The results indicate that risk of exposure through short-term vegetable crops is low. The data also demonstrate that uptake pathways for Sb and As in the vegetables were different with uptake strongly impacted by soil properties. A fraction of soil-borne metalloid was soluble in the different soils resulting in Sb soil solution concentration (10.75?±?0.52 μg L–1) that could present concern for contamination of water resources. EDTA proved a poor predictor of As and Sb phytoavailability. Oral bioaccessibility, as measured by SBET, was <7 % for total As and <3 % total Sb which is important to consider when estimating the real risk from soil borne As and Sb in the floodplain environment.  相似文献   

10.
The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb–Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma–mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb–Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb–Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.  相似文献   

11.
Iron mining activities in the Bruche valley (Vosges Mountains, France) date historically from the Roman period to the mid-nineteenth century. The geochemical and palynological study of a core from the peat bog of Le Champ du Feu allows highlighting impacts of these activities over the past millennium. Trace metal contamination is recorded for lead (Pb), arsenic, zinc, and antimony during the Middle Ages, the sixteenth century, and from cal. ad 1750–1900, with several sources distinguished by Pb isotope analyses. Forest exploitation is attested by the palynological analysis of the core, with exploitation of Fagus for smelting processes and cutting of Abies for agro-pastoralism. This approach highlights several patterns of contamination, corresponding to the mixing sources and the contamination intensity, which can be linked to the pollen assemblage zones. Hence, anthropogenic activities such as mining and farming led to long-term modification of the landscape composition in this mountainous area.  相似文献   

12.
ABSTRACT

Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg?1, which is lower than in coals from this region (6.2 mg kg?1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5–20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils.

IMPLICATIONS This work was carried out to analyze the pollution situation and environmental distribution of Sb in three important mines in Anhui Province of China. A detailed concentration analysis of Sb was used to indicate the anthropogenic source of human operation such as coal mining and depositing, coal cleaning, and electricity generation by coal power plants in the mine region. The investigation provides special useful information on the environmental behavior characteristics of Sb for environmental scientists and policy-makers.  相似文献   

13.

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd?>?Cu?>?Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.

  相似文献   

14.
Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.  相似文献   

15.
This study reports the chemical fractionation of several potentially toxic elements (Zn, Pb, Cd, As, and Sb) in contaminated technosoils of two former smelting and mining areas using two sequential extraction schemes. The extraction schemes used in this study were the Tessier’s scheme and a modified BCR scheme. The fractions were rearranged into four equivalent fractions defined as acid soluble, reducible, oxidizable, and residual to compare the results obtained from two sequential extraction schemes. Surface soils were samples from a waste landfill contaminated with Zn, Pb, and Cd located at Mortagne-du-Nord (MDN; North France) and from a settling basin contaminated with PTE such as As, Pb, and Sb located at La Petite Faye (LPF; Limoges, France). The study of the Zn, Pb, Cd, As, and Sb partitioning in the acid soluble, reducible, oxidizable, and residual fractions of the technosoils revealed that Zn, Cd, and Pb were mainly associated with the acid soluble and reducible fractions for MDN site, while As, Sb, and Pb were associated with residual fraction for LPF site. Fractionation results indicate that the percentages of Zn, Pb, Cd, As, and Sb extracted in Fe–Mn oxide bound fraction of Tessier’s scheme were always higher than those extracted by modified BCR scheme. This may be attributed to the stronger Tessier’s scheme conditions used to extract this fraction. In contrast the percentages of Zn, Pb, Cd, As, and Sb extracted in the organic fraction of the modified BCR scheme were always higher than those of the Tessier’s scheme. The order of mobility of PTE was as follows: Cd?>?Zn?>?Pb in MDN site and As?>?Sb?>?Pb in LPF site. PTE were distributed in all soil fractions, with the most relevant enrichments in extractable and residual fractions. A significant amount of Cd, Pb, and Zn were rather mobile, which suggests that these elements can be readily available to plants and soil organisms.  相似文献   

16.
A field study near the copper smelter of a large industrial complex examined air pollution effects on vegetation and soil parameters in Cama?ari (northeast Brazil). Close to the smelter, soil pH-value was lower and total acidity as well as organic carbon contents were higher compared with a site far from the source and two reference sites. The acidification of top soil particularly and the drastically enhanced plant-available copper concentrations were caused by atmospheric deposition. High sulphur and copper deposition significantly reduced microbial biomass and altered functional diversity of soil microorganisms (arylsulphatase and xylanase). Large accumulations of sulphur, arsenic and copper were detected in mango leaves (Mangifera indica) growing downwind from the smelter suggesting potential food chain-mediated risk.  相似文献   

17.
Specimens of the amphipod Hyalella azteca were deployed, in June-July 2003, along metal contamination gradients in two rivers affected by metal mining in the Abitibi - James Bay region, northwestern Québec. The amphipods were placed along with natural food items in small, acrylic cages and left in six riverine sites for 17 days. Twelve metals (As, Cu, La, Mn, Ni, Sb, Se, Tl, U, V, Zn, and CrO42− modelled by WHAM VI) in transplanted H. azteca varied along metal contamination gradients in a consistent manner, i.e., as a function of metal exposure. Bioaccumulation of As, Cr, La, Ni, Sb, Se, Tl, U and V, as defined by a field BCF, was significantly correlated with their chronic toxicity potential towards the amphipod. We conclude that H. azteca may be a useful field biomonitor for metal mining. In addition, our results suggest that such biomonitoring programs should include less studied elements such as Se in mining effluents.  相似文献   

18.
Most of the Cd applied through phosphatic fertilizers in sandy soils tends to stay in mobile forms (soluble or exchangeable) and hence the risk of it leaching to underground water or its uptake by plants is higher. A sequential extraction procedure was used to assess the efficacy of amending materials (soils containing inorganic or organic adsorption components) on the re-distribution of forms of Cd in a sandy soil. Amendment of the sandy soil with each of the three soils (yellow earth, lateritic podzolic and peaty sand) was generally effective in altering the more mobile or available forms of Cd to immobile or unavailable forms. The extent of alteration varied with the type of component present in the amendment soil, pH and the rate of Cd addition. The yellow earth was more effective at pH 7, whereas the peaty sand was equally effective at both pH 4 and 7 in altering the mobile to immobile forms. The lateritic podzolic soil was the least effective of the soils used at any of the pH values.  相似文献   

19.
Luo W  Lu Y  Wang T  Hu W  Jiao W  Naile JE  Khim JS  Giesy JP 《Ambio》2010,39(5-6):367-375
Distributions of arsenic and metals in surface sediments collected from the coastal and estuarine areas of the northern Bohai and Yellow Seas, China, were investigated. An ecological risk assessment of arsenic and metals in the sediments was evaluated by three approaches: the Sediment Quality Guidelines (SQGs) of the United States Environmental Protection Agency (USEPA), the degree of contamination, and two sets of SQGs indices. Sediments from the estuaries of the Wuli and Yalu Rivers contained some of the greatest concentrations of arsenic, cadmium, copper, mercury, lead, and zinc. Median concentrations of cadmium and mean concentrations of lead and zinc were greater than background concentrations determined for the areas. All sediments were considered to be heavily polluted by arsenic, but moderately polluted by chromium, lead, and cadmium. Current concentrations of arsenic and metals are unlikely to be acutely toxic, but chronic exposures would be expected to cause adverse effects on benthic invertebrates at 31.4% of the sites.  相似文献   

20.
Soil pollution with antimony is of increasing environmental concern worldwide. Measures for its control and to attenuate the risks posed to the ecosystem are required. In this study the application of several iron and aluminium oxides and oxyhydroxides as soil amendments was evaluated in order to assess their feasibility to stabilize Sb in mining polluted soils. Mine soils with different pollution levels were amended with either goethite, ferrihydrite or amorphous Al oxide at various ratios (0–10%). The effectiveness of such treatments was assessed by both batch and column leaching tests. The use of ferrihydrite or amorphous Al oxide proved to be highly effective to stabilize Sb. Immobilization levels of 100% were found when doses of 5% ferrihydrite or 10% amorphous Al oxide were applied, regardless of the soil Sb load. Column leaching studies also showed a high Sb leaching reduction (>75%) when soils were amended with 1% ferrihydrite or 5% amorphous Al oxide. Moreover, such treatments proved to simultaneously immobilize As and Pb in a great extent when soils were also polluted with such toxic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号