首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 603 毫秒
1.
不同污染程度湖泊沉积物中不同粒级可转化态氮分布   总被引:13,自引:4,他引:9  
研究了污染程度不同的五里湖、月湖、东太湖和贡湖不同粒级沉积物中总可转化态氮以及各形态可转化态氮的含量与分布.结果表明:4个湖泊的沉积物各粒级中各形态可转化态氮的含量及其地球化学特征均不相同.强氧化剂可提取态氮(SOEF-N)是释放能力最弱的形态,为可转化态氮的主体,占总可转化态氮的66.97%~87.97%.离子交换态氮(IEF-N)结合能力最弱,是最容易被释放的形态,为可转化态无机氮的主体,占总可转化态氮的7.37%~22.25%.同一粒级中,各形态可转化态氮对氮循环的贡献为SOEF-N最大,IEF-N其次,强碱可浸取态氮(SAEF-N)与弱酸可浸取态氮(WAEF-N)最低.随着沉积物粒级的由粗到细,总可转化态氮以及各形态可转化态氮含量均呈逐渐增加趋势.沉积物细颗粒部分对氮循环的可能贡献占绝对的主体,是粗颗粒部分的几倍到几十倍.相比而言,污染程度轻的贡湖和东太湖沉积物无论总可转化态氮还是各形态可转化态氮,细颗粒部分的相对含量均低于污染程度重的五里湖和月湖沉积物.   相似文献   

2.
烟台四十里湾柱状沉积物氮形态地球化学特征   总被引:6,自引:2,他引:4  
杨玉玮  高学鲁  李培苗 《环境科学》2012,33(10):3449-3456
采用连续浸取法首次对烟台四十里湾柱状沉积物不同形态的氮进行分离,并对其垂直地球化学特征和影响因素进行分析研究.可转化态氮分为离子交换态氮(IEF-N)、弱酸浸取态氮(WAEF-N)、强碱浸取态氮(SAEF-N)、强氧化剂浸取态氮(SOEF-N).结果表明,在沉积物表层(0~10 cm)可转化态氮占总氮的26.14%,并随着深度的增加而含量降低.各形态氮占可转化态氮比例平均大小顺序为SOEF-N(89.7%)>IEF-N(7.97%)>WAEF-N(1.19%)>SAEF-N(1.14%),说明SOEF-N是可转化态氮中的绝对优势态.不同形态氮与沉积物地球化学参数之间的相关关系分析表明,沉积物含水率、总有机碳、pH值、氧化还原电位、粒度组成等因素在一定程度上影响各形态氮含量,但各站位柱状样因其沉积物特征不同受各参数影响程度也不同.  相似文献   

3.
为研究白洋淀夏秋季各典型淀区沉积物中氮赋存形态及分布特征,采用逐级提取方法将沉积物中氮分为离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N),并对沉积物各形态可转化态氮与间隙水氨氮、硝氮的相关性进行分析。结果表明:夏季沉积物TN含量为3195.95~6335.34 mg/kg,秋季沉积物TN含量为3553.89~5786.3 mg/kg,原始区和养殖区的TN含量夏秋两季差异最大;夏秋两季15个采样点及5个功能区各形态氮含量均表现为WAEF-N>SOEF-N>SAEF-N>IEF-N,各形态可转化态氮含量无明显的季节变化特征;相关分析表明,沉积物中的弱酸可浸取态氨氮、硝氮与间隙水中的氨氮、硝氮在夏秋两季均相关性显著(P<0.05)。  相似文献   

4.
海州湾表层沉积物中氮的赋存形态及其生态意义   总被引:8,自引:1,他引:7  
于2014年10月在海州湾采集表层沉积物,利用分级浸取分离的方法,对其中的离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)及强氧化剂可浸取态氮(SOEF-N)4种可转化态氮(TTN)的含量进行了分析测定,结合沉积物的有机质含量(TOC)、粒度分布,讨论了各形态氮的生态意义.结果表明:IEF-N、WAEF-N、SAEF-N、SOEF-N、非转化态氮(NTN)、总氮(TN)的平均含量分别为12.63、5.78、8.93、85.32、568.93和681.59 mg·kg-1;各形态氮在TTN中所占的比例大小顺序为SOEF-N(75.73%)IEF-N(11.21%)SAEF-N(7.93%)WAEF-N(5.13%).研究还表明,沉积物中TN与TOC和粒径具有显著的相关性(p0.01);WAEF-N与TOC具有显著的相关性(p0.01),与粒径也具有显著相关性(p0.05),其他形态氮与TOC、粒度分布均有一定程度的相关关系;各形态氮与水体中的溶解态无机氮(DIN)、叶绿素a具有相关性,说明沉积物中的氮对海洋生态环境有着重要意义.  相似文献   

5.
白洋淀冰封期沉积物中氮赋存形态及分布特征   总被引:3,自引:3,他引:0       下载免费PDF全文
为研究白洋淀冰封期沉积物中氮的赋存形态及分布特征,初步探究氮素演变规律,于2019年1月采集白洋淀北部、中部、南部淀区的表层沉积物,采用氮连续分级浸提方法,将沉积物中的氮分为离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N)。结果表明:白洋淀冰封期沉积物总可转化态氮含量为3415. 256~5683. 580 mg/kg,平均值为4439. 975 mg/kg;空间分布上存在明显的差异,并呈现中部淀区>南部淀区>北部淀区的趋势,其中位于中部淀区的文化苑采样点总可转化态氮的含量最高,这主要与淀区不同的生态功能有关。3个分区中沉积物各形态氮的含量顺序均为WAEF-N>SOEF-N>SAEF-N>IEF-N,表明白洋淀沉积物受沉积环境和有机质等多重因素的影响。总之,白洋淀沉积物在冰封期较高的总可转化态氮含量和氮形态组成显示出底泥沉积物接纳了大量的可溶性污染物成为内源污染源,可能会在冰封稳定期、融冰期后的一段时间增加白洋淀氮释放风险。  相似文献   

6.
研究河流沉积物氮形态的分布可以了解流域的水环境现状.本研究通过分级浸取方法得到沉积物的离子交换态氮(IEF-N)、弱酸浸取态氮(WAEF-N)、强碱浸取态氮(SAEF-N)以及强氧化剂浸取态氮(SOEF-N),对比研究了太湖西部入湖河流(东苕溪、西苕溪)和洪泽湖西部入湖河流(安河、濉河)沉积物中氮形态的空间分布特征,分析了可转换态氮的主要影响因素.结果表明,不同流域之间沉积物的基本理化性质存在明显的差异,导致沉积物总氮以及可转化态氮的含量及空间分布也不相同.总体而言,太湖西部河流沉积物中总氮和总可转化态氮的含量略高于洪泽湖西部河流,但前者的空间变化小于后者.太湖西部河流沉积物与洪泽湖西部河流沉积物的可转化态氮含量大小排列顺序也有所不同,前者为SOEF-NSAEF-NWAEF-NIEF-N,后者为SOEF-NSAEF-NIEF-NWAEF-N,且后者各形态氮的含量变化更为明显,这主要与沉积物的组成和氮来源有关.研究区沉积物中可转化态氮的分布受其理化性质的影响明显,尤以有机质和粒度的影响最明显.  相似文献   

7.
本文以昌黎黄金海岸自然保护区海域沉积物为研究对象,分析保护区海域各位点沉积物中氮的赋存形态分布状况与中值粒径、有机质的相关性。结果表明:保护区海域沉积物的总氮(TN,total nitrogen)含量在180.13×10-6~966.00×10-6之间,平均值为638.15×10-6;其中非转化态氮(NTN,non-transformed nitrogen)含量在75.82×10-6~856.28×10-6之间,真正参与地球化学循环的可转化态氮(TTN,transferable total nitrogen)含量在104.31×10-6~165.12×10-6之间。各浸取态氮所占TN比例大小为弱酸可浸取态氮(WAEF-N,weak acid exchangeable form,61.69%)>强氧化剂可浸取态氮(SOEF-N,strong oxidant exchangeable form,20.38%)>离子交换态氮(IEF-N,ion exchangeable form,15.40%)>强碱可浸取态氮(SAEF-N,strong alkali exchangeable form,2.53%)。沉积物氮的分布特征主要与陆源营养盐的输入、洋流流向及海洋水动力条件等因素有关;沉积物中有机质含量、粒径分布对各浸取态氮含量的分布影响不大。对比已有统计数据,该保护区海域范围内沉积物基本没有污染状况的发生。  相似文献   

8.
胶州湾不同形态磷的沉积记录及生物可利用性研究   总被引:7,自引:4,他引:3  
利用磷的连续分级浸取法,研究了胶州湾柱状沉积物不同粒级中磷的赋存形态,并探讨了影响磷含量与分布的因素和沉积物中磷的生物可利用性.结果表明,在细、中和粗3个粒级的沉积物中,无机磷是磷的主要赋存形态,Ca-P则是无机磷的优势形态,有机磷只占较小的比例.粒度、有机碳(OC)、pH以及氧化还原电位等是影响胶州湾沉积物中磷的地球化学特征的重要因素.其中除Ca-P外,其他形态的磷大都随着粒度的变细,含量逐渐增加.磷的生物可利用性分析表明,胶州湾潜在的生物可利用磷主要包括可交换态磷、铝结合态磷、铁结合态磷和有机磷等4种赋存形态,并且潜在的生物可利用磷的含量随着粒度的变细,其所占的比例也逐渐增加.沉积物中生物可利用性磷与浮游植物的数量和水体中的磷酸盐大致呈正相关关系.  相似文献   

9.
为了揭示东部平原骆马湖、高邮湖、滆湖和阳澄湖四个湖泊沉积物中氮的分布特征及其影响因素,采用分级浸取法研究了湖泊表层沉积物中离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)、强氧化剂可浸取态氮(SOEF-N)这四种可转化态氮(TTN)和非转化态氮(NTN)的赋存特征,并结合沉积物粒度、pH值、总有机碳(TOC)和总磷(TP)含量等理化性质,利用多元统计分析了影响各形态氮分布的主要因素.结果表明:四个湖中氮均以TTN为主,且四个湖泊中TTN含量组成均表现为SOEF-N最高,IEF-N最低.沉积物中IEF-N、SOEF-N和NTN的空间分布趋势均与总氮(TN)一致;四种形态TTN的含量均表现为滆湖、阳澄湖高于骆马湖、高邮湖,其中骆马湖中各氮形态空间变化最大,主要与该湖中水生植物分布不均和大量采砂活动有关.IEF-N与TN呈极显著相关性,说明IEF-N的变化趋势与TN类似,TN含量在一定程度上可反映湖泊内源污染释放的高低.pH值、粒径对氮形态的影响较小,而C/N、磷输入、TOC均不同程度的影响着氮形态的含量及分布,尤其以P和TOC最为明显.  相似文献   

10.
为探究梯级水库建设对沉积物氮形态分布的影响,通过分级浸取方法得到沉积物的离子交换态氮(IEF-N)、弱酸提取态氮(WAEF-N)、强碱提取态氮(SAEF-N)以及强氧化剂提取态氮(SOEF-N),对比研究了有梯级水库建设的澜沧江和干流无水电站建设的怒江沉积物中氮形态的分布特征,分析了可转化态氮的主要影响因素.结果表明,两条流域沉积物赋存环境存在差异,进而使沉积物的理化性质呈现明显的差异,最终导致沉积物可转化态氮的含量及空间分布也不同,澜沧江沉积物可转化态氮的含量高于怒江,且澜沧江的空间变化也大于怒江,怒江IEF-N、WAEF-N、SAEF-N与SOEF-N含量范围分别为1.56~2.55,16.91~46.42,1.83~10.66,486.61~719.27mg/kg,澜沧江IEF-N、WAEF-N、SAEF-N与SOEF-N含量范围分别为1.55~14.35,20.77~83.08,1.36~92.15,562.61~1404.82mg/kg.两条河流的可转化态氮含量大小排列顺序一致,均为SOEF-N > WAEF-N > SAEF-N > IEF-N,怒江与澜沧江上游自然河段可转化态氮含量及空间分布基本一致,但在澜沧江的梯级水库段上,4种可转化态氮空间分布特征发生了较明显的变化,产生这种现象的原因主要是水库的建设导致了沉积物理化性质的改变,总有机碳、粒度、氧化还原电位对可转化态氮的影响不同.  相似文献   

11.
城市内河表层沉积物氮形态及影响因素   总被引:5,自引:0,他引:5       下载免费PDF全文
采用连续分级提取法对许昌市清潩河河道10个表层沉积物样品中氮形态含量进行测定, 分别得到离子交换态氮(IEF-N)、弱酸可提取态氮(WAEF-N)、强碱可提取态氮(SAEF-N)、强氧化剂可提取态氮(SOEF-N)和非可转化态氮(NTN), 探讨了不同形态氮分布特征、影响因素及其对河道水环境潜在的风险. 结果表明,沉积物中总氮(TN)含量为2140~9470mg/kg, 与沉积物有机质含量沿河道变化趋势基本一致; 可转化态氮(TTN)的优势形态从上游至下游逐渐由IEF-N向SAEF-N再向SOEF-N转化, 逐渐趋于稳定; IEF-N含量受沉积物有机质、pH值及上覆水体氨氮和悬浮物含量影响, 且与TN极显著相关, 说明清潩河沉积物TN含量可以作为河道内源污染风险判断的重要指标; 此外上覆水体较高的COD含量对SAEF-N和NTN的沉积、较高的氨氮含量对IEF-N和TN的释放以及总磷含量对NTN活性的增强等都产生影响.因此, 在开展清潩河水环境综合整治时, 需考虑水相与沉积物相的相互作用, 同步开展治理工作.  相似文献   

12.
为研究沉积物中氮形态及其质量分数对湖库水体富营养化的影响,在滇南双龙水库采集沉积柱样,分析TN、TIN(可转化态氮)、IEF-N(离子交换态氮)、WAEF-N(弱酸浸取态氮)、SAEF-N(强碱可浸取态氮)、SOEF-N(强氧化剂可浸取态氮)质量分数的剖面特征.通过Pearson相关、RDA(冗余分析)和回归分析探讨沉积物理化性质对氮迁移转化的影响,并结合TLI(综合营养状态指数)和ON(有机氮)指标评估水库氮引起的富营养化程度.结果表明:①柱芯(70 cm)的沉积年代为1871—2011年.②沉积物中w(TN)范围为0.832~5.744 mg/g,其中w(IEF-N)和w(SAEF-N)范围分别为0.027~0.142和0.033~0.131 mg/g,且随深度的增加均呈下降趋势;w(WAEF-N)和w(SOEF-N)范围分别为0.044~0.108和0.114~0.586 mg/g,且随深度的增加均波动变化.③单因子分析表明,各形态氮质量分数与粒度呈负相关,与w(TOC)呈极显著正相关(P < 0.01),pH与各形态氮(WAEF-N除外)质量分数存在极显著负相关;综合因子分析表明,各形态氮质量分数主要受w(TOC)和pH共同作用.④污染评价结果表明,沉积物中w(TN)和w(ON)较高,双龙水库长期处于中度富营养化水平.研究显示,沉积物中TIN的迁移转化和外源氮的输入会引起水库上覆水中氮质量分数的增加,进而加剧水库富营养化,需重点关注沉积物中氮的内源性释放及流域土壤侵蚀引起的氮外源输入.   相似文献   

13.
洱海沉积物中不同形态氮的时空分布特征   总被引:23,自引:5,他引:18  
为揭示沉积物中氮形态变化的影响因素及其生态效应,对洱海表层沉积物中不同形态氮的空间分布和季节性变化特征进行了研究. 结果表明:洱海表层沉积物中w(TN)在2354~6174mg/kg之间,空间分布呈湖区北部>南部>中部的趋势;w(TTN) (TTN为可交换态氮)在1158~2921mg/kg之间,占w(TN)的43%,其分布趋势与w(TN)相同;各形态TTN表现为SOEF-N(强氧化剂可提取态氮,w为974~2515mg/kg)>WAEF-N(弱酸可提取态氮,w为91~210mg/kg)>SAEF-N(强碱可提取态氮,w为38~198mg/kg)>IEF-N(离子交换态氮,w为66~130mg/kg),w(WAEF-N)和w(IEF-N)的分布趋势与w(TTN)相同,w(SAEF-N)中部较高,w(SOEF-N)南部较高. 沉积物中w(TN)和w(NTN)(NTN为非转化态氮)7月较高,TTN及其各形态氮质量分数1月较高. 不同形态氮质量分数随沉积物深度的增加均呈下降趋势,NTN的富集速率高于TN. 洱海沉积物中w(TN)高于长江中下游湖泊,表层TN富集明显. 沉积物氮释放风险较大,但其w(TTN)和w(IEF-N)占w(TN)的比例低于长江中下游湖泊,即洱海沉积物氮释放量小于长江中下游湖泊;洱海沉积物中各形态氮质量分数与w(TOM)均呈显著正相关,与水深呈负相关,显示有机态氮与有机质同步沉积且受外源输入影响较大,w(IEF-N)分布同时受水生植物等影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号