首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过连续流实验研究了低浓度乙酸盐诱导下厌氧氨氧化颗粒污泥与异养反硝化菌的耦合脱氮性能,同时采用批试实验考察耦合系统中的氮素转化及去除途径。结果表明:采用低浓度乙酸盐对厌氧氨氧化颗粒污泥进行驯化,可以实现厌氧氨氧化与异养反硝化的高效耦合脱氮。系统在稳定时期,进水NH_4~+-N为30~40 mg·L~(-1)、NO_2~--N为45~55 mg·L~(-1)、CH_3COONa为60~80 mg·L~(-1),NH_4~+-N、NO_2~--N和TN的去除率分别为93.84%、94.62%和86.46%。耦合系统中的颗粒污泥同时存在厌氧氨氧化特性、硝化特性和反硝化特性。颗粒污泥表现出良好的厌氧氨氧化特性,总氮去除速率为12.46 mg·(g MLSS·h)~(-1)。系统中存在的硝化细菌可以消耗进水中的溶解氧从而缓解溶解氧对ANAMMOX菌的抑制,其中AOB活性高于NOB活性。系统中颗粒污泥对硝氮的反硝化作用强于对亚硝氮的反硝化作用,亚硝氮反硝化和硝氮反硝化的降解速率分别为1.89和3.59 mg·(g MLSS·h)~(-1)。当亚硝氮和硝氮同时存在时,反硝化菌优先将硝氮还原成亚硝氮。  相似文献   

2.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

3.
通过接种厌氧氨氧化菌(Candidatus Brocadia)与部分反硝化菌(Thauera)形成厌氧氨氧化与部分反硝化耦合处理模拟城镇污水中的氨氮(NH_4~+-N)与硝氮(NO3--N),考察不同NO3--N/NH_4~+-N比对耦合系统脱氮性能的影响及最佳NO3--N/NH_4~+-N比下耦合系统的稳定性和脱氮的途径。结果表明:在COD/NO3--N为2.5、NH_4~+-N浓度为20~40 mg·L~(-1)的条件下,NO3--N/NH_4~+-N比在0.8~1.6的范围内均可实现部分反硝化与厌氧氨氧化协同脱氮,且当NO3--N/NH_4~+-N比为1.2时,耦合效果最佳,对应的NH_4~+-N、NO3--N及总氮(TN)去除率分别为92.85%、99.68%和96.42%;厌氧氨氧化菌在耦合系统中的活性稳定在(4.62±0.44)mg·(g·h)-1(以VSS计),且与反硝化菌存在协同竞争关系,进水NO3--N的84.3%由厌氧氨氧化途径去除,15.7%由异养反硝化途径去除。  相似文献   

4.
HRT对UASB厌氧反硝化脱氮的影响   总被引:1,自引:0,他引:1  
在反硝化脱氮的影响因素方面,研究多集中在碳源种类和碳氮比(C/N)2个方面,而对水力停留时间(HRT)的影响很少有报道。采用UASB作为厌氧反硝化反应器,进水NO_3~--N为50 mg·L~(-1),C/N比固定为1.5,分别以葡萄糖和乙酸钠作碳源,研究HRT对反硝化效果的影响。结果表明:当外加碳源为葡萄糖时,最佳HRT为6 h,此时NO_3~--N和TN的去除效果最好,去除率分别为79.5%和63.8%,出水NO_2~--N和NH_4~+-N浓度分别为4.69 mg·L~(-1)和2.22 mg·L~(-1);当外加碳源为乙酸钠时,最佳HRT为4 h,对应的NO_3~--N和TN去除率分别为99.0%和91.4%,出水NO_2~--N和NH_4~+-N浓度分别为3.08 mg·L~(-1)和0.47 mg·L~(-1)。HRT对反硝化效果有显著影响,且跟碳源种类有关。HRT会影响反硝化菌、反硝化异化还原成铵(DNRA)细菌和其他异养菌之间的平衡。  相似文献   

5.
构建了3室榨菜生产废水微生物脱盐燃料电池系统(microbial desalination cell,MDC),探讨了其阳极COD对榨菜废水MDC产电、脱盐的影响;通过微生物群落分析,探查了脱盐室NH_4~+-N的去除途径。结果表明:在产电性能方面,MDC阳极COD为900 mg·L~(-1)时较400 mg·L~(-1)与1 400 mg·L~(-1)时更优,在1 000Ω的外电阻负载下,其输出电压、最大功率密度、库仑效率分别为550 mV、2.91 W·m~(-3)、(15.7±0.5)%;在脱盐方面,阳极COD为400 mg·L~(-1)时,较其他2种情况更优,MDC的脱盐时间、脱盐速率、电子利用效率分别为910.5 h、5.15 mg·h~(-1)、111%。阳极COD不同的MDC脱盐室,其NH_4~+-N的去除途径基本相同。脱盐室部分NH_4~+-N转化为NO_3~--N后,通过自身的反硝化或以NO_3形式迁移至阳极得以去除,剩余的大部分NH_4~+N以NH_4~+形式迁移至阴极,在碱性环境下转化为NH_3并排出。高通量测序分析结果表明,水解发酵菌属(总丰度为33.21%)为MDC阳极的核心微生物群落。阳极生物膜中的电化学活性菌(总丰度为11.78%)可实现电池的产电功能,反硝化菌属(总丰度为14.61%)的存在证明,脱盐室盐室NO_3~--N迁移至阳极室后进行了反硝化并得以去除。在脱盐室水体中检测到了氨氧化菌属(总丰度为6.93%)及反硝化菌属(总丰度为15.82%),这也是脱盐室中NO_3~--N快速产生和随后浓度陡降的原因。  相似文献   

6.
针对厌氧氨氧化工艺(ANAMMOX)的进水需求以及污水中氮素的存在形态,增强前置半亚硝化工艺的运行稳定性是十分有必要的。研究发现:在温度(30±1)℃、进水pH在8.0以上、DO在0.3 mg·L~(-1)左右、HRT=8 h的情况下;逐步增加进水氨氮(NH_4~+-N)与碳酸氢盐浓度,经过19 d成功启动亚硝化反应(以亚硝硝酸盐积累率达到50%为限);为了进一步提升亚硝酸盐积累率,间歇投加5 mmol·L~(-1)氯酸钾,后又改加联氨作为硝化反应的选择性抑制剂,经过大约90 d的反复调试运行,使得出水中NH_4~+-N与亚硝态氮(NO_2~--N)的摩尔比近似1∶1,基本符合厌氧氨氧化工艺进水需求。通过Miseq测序结果发现:氨氧化菌(AOB)在添加氯酸钾之后,已经成为绝对优势菌种,所占比例为54.99%;在添加联氨之后,AOB所占比例能够达到63.92%,其中包括Nitrosomonas sp和Nitrosomonas europaea这两种亚硝化菌;只有痕量亚硝酸盐氧化菌(NOB)的存在。  相似文献   

7.
采用连续进水(feed-batch)方式的SBR在高氨氮负荷(1 kg·(m~3·d)~(-1))和双重抑制下实现了亚硝化系统的启动及稳定运行。采用荧光原位杂交技术(FISH)对活性污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)种群及数量变化进行测定。结果表明在温度(35±1)℃,进水氨氮浓度为1000mg·L~(-1)的条件下对NOB的抑制由游离亚硝酸(FNA)和DO的双重抑制转变为游离氨(FA)和DO的双重抑制,污泥亚硝酸盐氧化速率由28.16mg·(g·h)(以MLVSS计)降到0.3 mg·(g·h)~(-1)(以MLVSS计)以下,成功实现了高氨氮废水的稳定亚硝化。反应器出水NO_2~--N平均浓度为466.45 mg·L~(-1),NO_2~--N/NH_4~+-N接近1,NO_3~--N浓度低于20 mg·L~(-1),満足厌氧氨氧化(ANAMM0X)的进水基质要求。FISH结果表明,富集培养阶段AOB、NOB的优势种属由亚硝化单胞菌属(Nitrosomonas)及硝化螺旋菌属(Nitrospira)转变为Nitrosomonas及硝化杆菌属(Nitrobacter),抑制过程中NOB逐渐被淘汰最终硝化菌以Nitrosomonas为主,从微生物学角度佐证了亚硝化的稳定运行。  相似文献   

8.
采用多级潮汐流人工湿地(multi-stage tidalflow constructed wetlands,MTF-CWs)处理城市污水处理厂剩余污泥厌氧消化液(excess sludge anaerobic digester liquids,ES-ADL),以垂直潮汐流的运行方式强化硝化,并根据进水NH_4~+-N和TN浓度分为2种不同工况。实验结果表明:在进水COD、NH_4~+-N和TN浓度分别为(293.68±9.62)、(845.70±11.53)和(847.00±11.47)mg·~(L-1)的条件下(工况1),出水COD、NH_4~+-N和TN浓度分别为(84.47±8.10)、(8.81±1.74)和(351.50±7.78)mg·L~(-1),COD、NH_4~+-N和TN的平均去除率分别为72.45%、98.93%和56.48%;在进水COD、NH_4~+-N和TN浓度分别为(413.31±7.47)、(1 023.85±8.32)和(1 025.78±8.31)mg·L~(-1)的条件下(工况2),出水COD、NH_4~+-N和TN浓度分别为(51.60±6.05)、(9.58±3.13)和(359.92±7.68)mg·L~(-1),COD、NH_4~+-N和TN的平均去除率分别为87.34%、99.05%和64.68%。在上述2种工况条件下,可将城市污水处理厂ES-ADL回流引起的氮循环累积量分别降低58.50%和62.19%。溶解氧消耗计算结果表明:MTF-CWs并没有提供NH_4~+-N的氧化(全程硝化或短程硝化过程)所需要的溶解氧;氮平衡计算结果表明:2种工况条件下通过非传统硝化-反硝化途径(如厌氧氨氧化)去除的总氮负荷分别占据总氮去除负荷的86.30%和82.53%。采用Miseq高通量测序技术进行菌群分析,结果表明:在反硝化脱氮贡献最大的人工湿地单元存在大量的厌氧氨氧化细菌Candidatus Kuenenia,且其占比随着取样深度(0.05~0.20m)增加而增加(其丰度由5.08%增加到13.18%),表明MTF-CWs处理ES-ADL时存在厌氧氨氧化途径。  相似文献   

9.
针对城市污水处理厂污泥厌氧消化液回流而引起城市污水处理厂处理系统内氨氮累积的问题,采用多级潮汐流人工湿地(MTF-CWs),研究MTF-CWs对污泥厌氧消化液中氨氮和有机物的去除特征及其主要去除途径。经过260 d的运行,结果表明,NH_4~+-N和COD平均进水浓度分别为859.55 mg·L~(-1)和446.52 mg·L~(-1),MTF-CWs对NH_4~+-N和COD均有较好的处理效果,平均去除率分别为66.50%和47.10%。在MTF-CWs中,转化为NO_2~--N和NO_3~--N占被去除NH_4~+-N的73.21%,硝化反应是NH_4~+-N去除的主要途径,MTF-CWs的平均硝化速率为0.3 kg·(m~3·d)~(-1)。TN的平均去除率为17.63%,去除效果较差,其原因在于原水中缺少反硝化所需要的碳源。  相似文献   

10.
从广州市某污水处理厂缺氧段活性污泥中分离筛选出一株反硝化菌,以该菌株为研究对象,鉴定后对该菌株进行脱氮条件最优化实验在此基础上,分析其厌氧氨氧化能力。结果表明:在柠檬酸钠浓度为9 g·L~(-1),KNO_3浓度为1 g·L~(-1),溫度为35℃,pH为6.8的条件下,同时控制接种量为2.5%,即控制初始菌株浓度为10~7 mL~(-1)时,2 d后8号菌能达到87%的最佳NO_3~--N去除率;在厌氧氨氧化能力检测实验中,培养液中生化反应以反硝化作用为主,在第3·5天发现厌氧氨氧化反应,因此推测这株菌具有厌氧氨氧化反应能力。经初步鉴定,该菌株为苏云金芽孢杆菌(Bacillus thuringiensis)。  相似文献   

11.
采用ASBR厌氧氨氧化(ANAMMOX)反应器,考察了不同C/N(NH+4-N)比时厌氧氨氧化与反硝化协同脱氮性能表现,并与无机环境下反应器的脱氮性能相比较。研究结果表明,C/N比决定了ANAMMOX/反硝化耦合反应的发展方向。当C/N0.33时,ANAMMOX为主导反应;当C/N=0.67时,耦合反应的效果最佳,NH_4~+-N和NO_2~--N的去除率分别为92%、95%、COD去除率大于96%,实现了氨氮及COD的同时去除;当C/N=1.33时,反硝化反应逐渐占据优势;当C/N2.96时,反硝化作用成为主导反应,厌氧氨氧化反应受到明显抑制,氨氮去除率下降。采取批次实验方法研究了厌氧氨氧化与反硝化协同反应的动力学特性。用基质抑制动力学Haldane模型拟合不同基质浓度下的厌氧氨氧化活性,得到氨氮最大比增长速率为0.09 kg/(kg·d)(以VSS计),半饱和常数为8.4 mg/L、半抑制常数为1 198.2 mg/L;亚硝态氮最大比增长速率为0.27 kg/(kg·d)(以VSS计),半饱和常数为10.2 mg/L、半抑制常数为300.1 mg/L。采用Monod模型和Haldane模型分别拟合不同COD浓度和亚硝酸盐浓度下的反硝化性能,得到反硝化亚硝态氮最大比增长速率为0.2 kg/(kg VSS·d),半饱和常数为17.4 mg/L、半抑制常数为128.4 mg/L,COD半饱和常数为83.3 mg/L。  相似文献   

12.
考察一次性降温和阶梯式降温对厌氧氨氧化反应器(ASBR)脱氮性能的影响。一次性降温方式(30℃降至15℃),阶梯式降温方式(30℃降至25℃,再降至20℃,最后降至15℃)。温度30℃时,NH_4~+-N和NO_2~--N的去除率分别为97.3%和98.5%,总氮去除速率为5.12 mg·(g·h)~(-1),?NO_2~--N/?NH_4~+-N为1.33,厌氧氨氧化活性(SAA)为0.139 g·(g·d)~(-1)。一次性降温至15℃时,NH_4~+-N和NO_2~--N的去除率分别降至47.9%和55.1%,总氮去除速率降至2.74 mg·(g·h)~(-1),?NO_2~--N/?NH_4~+-N升至1.51,SAA降至0.071 g·(g·d)~(-1)。阶梯式降温至15℃时,NH_4~+-N和NO_2~--N的去除率降至51.6%和61.2%,总氮去除速率降至3.22 mg·(g·h)~(-1),?NO_2~--N/?NH_4~+-N升至1.48,SAA降为0.083 g·(g·d)~(-1)。阶梯式降温方式脱氮性能更佳。  相似文献   

13.
采用DBF-BAF工艺处理焦化废水,考察不同硝化液循环比条件下系统的脱氮除碳效果,通过分析循环比对各反应器内的氮赋存反应、COD去除特性的影响,探究其对DBF-BAF工艺处理焦化废水时脱氮除碳效能的影响机制。结果表明:适当增大循环比,有利于系统脱氮除碳,在300%的最佳循环比下,系统对COD、NH_4~+-N、有机氮和TN的平均去除率分别为87.57%、97.34%、99.18%和79.97%,出水NH_4~+-N稳定达到5.00 mg·L~(-1)以下;循环比通过改变各反应器进水COD、NO_3~--N、NH_4~+-N、有机氮和DO浓度来影响其内的碳氧化反应和氮素的转化与去除,进而影响系统的脱氮除碳效能。  相似文献   

14.
pH和C:N对厌氧氨氧化耦合短程反硝化脱氮性能的影响   总被引:1,自引:0,他引:1  
以低DO和逐渐降低亚硝态氮浓度的方式运行厌氧氨氧化(ANAMMOX)上流式污泥床(AUASB)反应器,第57天实现稳定运行,氨氮去除率保持在85%以上,采用高通量测序技术分析发现ANAMMOX污泥中主要功能菌转变为Candidatus kuenenia,丰度为8.85%,好氧氨氧化菌(AOB)Nitrosomonas的丰度为1.48%,短程反硝化菌Thauera丰度为0.66%。将AUASB反应器中污泥接种在ANAMMOX序批式反应器(ASBR)后,通过外加有机碳源的方式使ASBR拥有了短程反硝化的能力,然后研究了不同C:N(质量比)和不同pH条件下亚硝态氮积累情况和氮素转化特性,结果表明:当C:N为3.2:1.0时,亚硝态氮积累率最高为84%,但有部分亚硝态氮被还原。当pH为7.8时,ANAMMOX菌活性最高,氨氮去除率为95%。扫描电子显微镜(SEM)观察到ANAMMOX菌为球状,短程反硝化菌为短杆状。  相似文献   

15.
对硬头鳟(Oncorhynchus mykiss)和虹鳟(O. mykiss)鱼苗循环水养殖系统生物滤池运行效率以及其不同部位主要功能进行比较。于2017年5—11月,测定了六级生物滤池的基本水质指标(TAN、NO_2~--N和NO_3~--N等),并计算了六级生物滤池对TAN、NO_2~--N和NO_3~--N的去除率。于养殖中期,测定了六级生物滤池不同部位(BF1~BF6)的硝化速率、亚硝氮氧化速率和反硝化速率。结果表明:六级生物滤池对TAN、NO_2~--N和NO_3~--N的平均去除率分别为75.00%、44.00%和17.70%,其主要去除效果发生在BF1~BF3;六级生物滤池中BF1的硝化速率最高,与BF1较高的初始TAN浓度、充足的溶氧和最适pH有关;BF3的亚硝氮氧化速率最高,与BF3较高的初始NO_2~--N浓度有关;BF5的反硝化速率最高,与BF5较低的pH和较高NO_3~--N浓度有关。结果表明适当缩减生物滤池级数,并在循环水养殖系统中加入反硝化反应器,有利于提高系统运行效率。  相似文献   

16.
基于厌氧氨氧化(Anammox)反应,采用13C同位素示踪法分析无机碳(IC)在工艺中的迁移转化路径,考查厌氧氨氧化工艺的固碳潜力及厌氧氨氧化菌相关的固碳机理;同时,结合微生物分子学等方法,通过比较反应前后NH_4~+-N、NO_2~--N、TN及IC的变化,分析推导出工艺的固碳机理。结果表明,在进水IC为10.70 mg左右时,系统平均固碳率在12.05%以上;经~(13)C标记处理后的Anammox污泥中~(13)C丰度值由1.07%增加至1.17%以上;Anammox污泥中cbbLR1基因拷贝数经氮素和IC影响后分别为5.79×10~8copies·g~(-1)和5.56×10~8copies·g~(-1),较处理前均有所增加,但变化不明显。进水中投加的IC参与了微生物体内的碳代谢;厌氧氨氧化菌存在遵循卡尔文循环固碳途径的功能基因。cbbLR1基因丰度与氮素浓度之间呈显著相关,与IC浓度之间的相关性不明显,说明该基因丰度对氮素的响应度比IC大。  相似文献   

17.
UASB-SBR工艺处理规模化畜禽养殖废水   总被引:1,自引:0,他引:1  
针对规模化畜禽养殖废水常规厌氧-好氧组合处理工艺及SBR处理工艺脱氮效率低、运行费用高等问题,采用UASB-SBR工艺,研究3种不同的SBR模式对处理效果的影响。结果表明,UASB容积负荷(以COD计)8 kg·(m~3·d)-1、pH 7.0、温度35℃、HRT 25 h时,COD去除率为80%~85%;SBR在进水15 min、反应480 min、沉淀60 min、出水15 min、闲置810 min条件下,对废水COD、NH_4~+-N、和TN去除率分别为91.8%、98.7%和71.6%,出水COD≤180 mg·L~(-1)、NH_4~+-N15 mg·L~(-1)、TN50 mg·L~(-1),达到《畜禽养殖业污染物排放标准》(GB 18596-2001)。该运行条件下NO_2~--N积累率超过50%,出现了NO_2~--N积累,短程硝化反硝化是主要脱氮方式。  相似文献   

18.
有机物浓度对厌氧氨氧化脱氮性能影响试验研究   总被引:8,自引:2,他引:6  
通过间歇试验和连续试验研究了不同有机物浓度对厌氧氨氧化活性及脱氮性能的影响。间歇试验结果表明:自养条件下厌氧氨氧化菌的最大比反应速率为0.189 kg NH+4-N/(kg VSS·d);当氨氮和亚硝酸盐氮浓度为80 mg/L时,有机物的添加降低了厌氧氨氧化速率,当有机物浓度超过70 mg/L时,厌氧氨氧化菌的最大比反应速率降低到0.05 kg NH+4-N/(kg VSS·d)以下,是反硝化菌与厌氧氨氧化菌竞争亚硝酸盐产生了可逆抑制的结果。连续试验结果表明,高氮低碳源有机环境下厌氧氨氧化能稳定运行,并且比自养系统中总氮的去除率有所提高,当COD值为50 mg/L时,总氮去除率最大,平均值达96.59%,是反硝化菌和厌氧氨氧化菌共同脱氮的结果;当有机物浓度过高时,ANAMMOX对TN去除贡献率持续降低,反硝化不断得到强化,厌氧氨氧化运行不稳定。  相似文献   

19.
为解决屠宰废水的高氨氮问题,在2 L SBBR中添加Fe~(3+)对模拟屠宰废水进行脱氮处理。在室温条件下,研究了不同浓度Fe~(3+)对NH_4~+-N、N O_2~--N、NO_3~--N、COD、同步硝化反硝化速率(ESND)、微生物群落分布的影响。结果表明,曝气量为0.6 L·min~(-1),HRT为12 h,Fe~(3+)质量浓度为10 mg·L~(-1)时,NH_4~+-N、COD和TN去除率分别为94%、97%和89.28%。N O_3~--N含量小于5 mg·L~(-1),NO2~--N含量接近0 mg·L~(-1),ESND平均值可达93.91%,比对照组高5.24%。Fe~(3+)提高了微生物抗低温冲击性,加快了同步硝化反硝化速率。高浓度的Fe~(3+)(30~50 mg·L~(-1))会产生生物毒性,抑制生物脱氮。SEM及显微镜观察发现,含有10 mg·L~(-1) Fe~(3+)的体系减少了生物质流失,微生物种类丰富,体系脱氮性能得到有效提升。  相似文献   

20.
姬倩  彭党聪  赵文钊 《环境工程学报》2019,13(12):3012-3018
衰减系数是表征微生物增长的重要动力学参数,与所处环境密切相关。采用基质利用速率测定方法,以厌氧氨氧化工艺中最常见的厌氧氨氧化菌(Candidatus Brocadia)为对象,探讨了其在缺氧(NO_2~--N、NO_3~--N)及厌氧环境下的衰减系数。结果表明:基质利用速率测定方法可有效避免由于其他细菌的衰减而引起的实验误差;缺氧(NO_2~--N、NO_3~--N)及厌氧环境下厌氧氨氧化菌的衰减系数依次为0.035 2 d~(-1)、0.025 7 d~(-1)和0.051 2 d~(-1),相比于其他自养菌,厌氧氨氧化菌的衰减系数较小。在进行污泥保存时,维持NO_3~--N的缺氧环境有利于厌氧氨氧化菌活性和数量的保存。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号