首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了研究多环芳烃(PAHs)污染土壤堆肥修复的加速机制,在人工控温的堆肥装置中以芘、菲和芴为研究对象,采用室内模拟实验的方式研究了添加硫酸钙、过磷酸钙、草炭、竹炭、十二烷基硫酸钠(K12)和十二烷基苯磺酸钠(SD-BS)等对锯末高温堆肥降解污染土壤PAHs的影响。研究结果表明,生物堆肥可以有效的去除土壤中PAHs,堆肥7周后所有处理下芘、菲和芴的降解率基本达到80%以上。不同添加剂处理下芘、菲和芴降解率不同,尤其是添加草炭和竹炭处理中芴和菲在第4周的时候就取得90%以上的降解率,芘在第6周也取得80%以上的降解率,而且氮素的损失率也分别下降了42.6%和36.09%,比其他处理的PAHs降解率和保氮效果都要好。分析其原因,一方面可能是添加不同添加剂对堆肥过程中pH值、有机质(SOM)、总氮(TN)和过氧化氢酶(CAT)都有一定的影响,提高了土壤微生物的活性;另一方面可能是由于草炭和竹炭对氨有良好的吸附性,具有良好的保氮效果,同时也能改善了微生物和目标化合物的接触方式,从而提高了PAHs的降解率。  相似文献   

2.
研究了鼠李糖脂浓度对3种多环芳烃(PAHs)菲、荧蒽和芘去除率的影响,以及对土壤微生物群落结构的影响。结果表明,培养35d后,鼠李糖脂质量浓度为100~200mg/kg时,菲、荧蒽和芘的去除率相对最高,土壤中细菌16SrRNA基因和phnAc基因的丰度也达到最大。土壤中天然的PAHs降解菌群主要是假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)、鞘氨醇单胞菌属(Sphingomonas)、溶杆菌属(Lysobacter)和环脂酸芽孢杆菌属(Tumebacillus)等;加入鼠李糖脂后,赭黄嗜盐囊菌属(Haliangium)和土壤红杆菌属(Solirubrobacter)的丰度增加,促进了PAHs更高效的降解。  相似文献   

3.
在温室盆栽条件下,通过单独种植紫茉莉、单独接种多环芳烃(PAHs)模式化合物芘的专性降解菌ZQ5和两者的联合修复的3种处理,对芘污染土壤的修复效果进行了研究。结果表明,经90 d修复后,植物-微生物联合修复可将人工污染土壤中的芘降解81.1%,将石油污染土壤中的芘降解50.3%,其修复效率明显高于其他2种处理,是紫茉莉修复的1.98倍,是降解菌ZQ5修复的1.39倍。ZQ5的不同接菌量对于修复60 d后的降解率影响不大。外源生物修复条件下,10~20 cm土壤的修复效率要高于5 cm土壤;自然降解条件下,5 cm土层降解率略高于其他土层。  相似文献   

4.
盐环境下降解菌群对芘的降解特性研究   总被引:2,自引:0,他引:2  
以芘为多环芳烃(PAHs)的代表物,利用1.0%盐度的无机盐培养基从石油污染土壤中富集出高效嗜盐PAHs降解菌群。通过DNA测序鉴定,菌群中对芘起重要降解作用的是Rhodanobacter、Pseudomonas、Mycobacterium,3者碱基比例达到31.82%。14d内,萘、菲、荧蒽、芘、苯并[a]芘5种PAHs的挥发损耗均可忽略不计。筛选得到的菌群降解芘的最佳条件为:酵母粉质量浓度为120mg/L,盐度不超过1.0%,无需额外添加甲基-β-环糊精。筛选出的降解菌群对芘的最佳降解条件可用于降解萘、菲、荧蒽和苯并[a]芘等其他PAHs,但随着PAHs环数增加,分子量增大,降解率降低。在最佳条件下降解14d时,萘、菲、荧蒽、芘、苯并[a]芘5种PAHs的降解率可分别达100.00%、85.48%、51.92%、56.28%、50.45%。  相似文献   

5.
类Fenton试剂氧化降解土壤中PAHs及其影响因素研究   总被引:3,自引:0,他引:3  
使用类Fenton试剂可以有效降解土壤中的多环芳烃(PAHs)。选择4种PAHs菲、芘、苯并[a]芘、茚并(1,2,3-cd)芘作为考察对象,研究了类Fenton试剂对土壤中PAHs的降解条件。单因素降解实验结果表明,在H2O2浓度为0.5mol/L,Fe(NO3)3浓度为0.1 mol/L,水土比为3∶1,反应时间为...  相似文献   

6.
以腐植酸(HA)溶液为吸附剂、从受多环芳烃污染的土壤中分离出来的降解菌制成为生物修复剂,以多环芳烃(PAHs)萘、菲、芘、荧蒽、苯并蒽、苯并芘为土壤污染物,对PAHs污染土壤进行修复实验。目的是筛选与分离吸附于HA的PAHs降解菌,研究HA与降解菌的协同效应对PAHs的降解效率的影响。用经过HA吸附的PAHs富集分离培养出1株高效降解菌株,命名为Tzyx3,鉴定其为解脂耶氏酵母菌(Yarrowia lipolytica)。15 d后,土壤中萘、菲、芘、荧蒽、苯并蒽、苯并芘的降解率分别为90.7%、91.0%、74.7%、86.9%、84.7%和74.7%,表明Tzyx3和HA在PAHs污染土壤中存在协作关系,Tzyx3能够直接利用HA对土壤中的多环芳烃进行降解。  相似文献   

7.
一株多环芳烃降解菌的筛选及其降解特性   总被引:1,自引:0,他引:1  
微生物修复是治理土壤多环芳烃(polycyclic aromatic hydrocarbons, PAHs)污染的主要方法,而高效降解菌筛选是微生物修复技术的重要基础。从北京焦化厂土壤中筛选分离得到一株PAHs降解菌Q3,通过生理生化和16S rDNA等分析手段鉴定其为Rhodococcus rhodochrous。结果表明:该菌株对芘的耐受能力较强,可降解初始浓度为200 mg·L~(-1)的芘;该菌株具有降解广谱性,可利用苯并[a]芘、苯并[b]荧蒽、二苯并[a,h]蒽、苯并[g,h,i]苝等9种PAHs为唯一碳源进行代谢,特别是对苯并[a]芘等高环PAHs具有较好的降解效果;此外,该菌株可有效降解模拟液中的混合PAHs,并且对野外被PAHs长期污染的土壤具有较好的强化修复效果。投加菌株处理后的处理组与对照组相比,土壤PAHs总去除率提高了24%。以上结果表明该菌株对环境中被PAHs污染的土壤具有较好的强化修复潜力,可为PAHs污染土壤的微生物修复技术提供技术参考。  相似文献   

8.
焦化厂污染土壤堆肥修复过程的毒性变化   总被引:1,自引:0,他引:1  
以北京某焦化厂污染土壤为研究对象,按照5∶1的比例添加锯末后加入5%的草炭进行好氧堆肥,通过对污染土壤堆肥处理过程中16种PAHs的降解率、CAT值、SOM值、土壤毒性、pH和TN值的变化规律进行比较,研究添加草炭好氧堆肥对实际有机污染土壤中PAHs的降解效果。研究结果表明,(1)添加草炭好氧堆肥能有效降解有机污染土壤中PAHs,堆肥49 d后,EPA优控的16种PAHs总值从1 085.42 mg/kg降低到71.10 mg/kg,总降解率为93.27%。(2)焦化厂土壤中PAHs浓度较高的分别为荧蒽、菲、芴、苯并(a)蒽、芘、蒽和苯并(k)荧蒽,它们的和占Σ16PAHs总量的73.56%,其中荧蒽的含量最高,浓度为186.913 mg/kg。这7种PAHs的经过49 d添加草炭堆肥后降解率分别为95.67%、93.52%、92.22%、93.12%、93.01%、95.19%和96.24%。(3)通过有机质值和Σ16PAHs总量作图发现,有机质值和Σ16PAHs总量有一定的相关性,这表明在堆肥过程中,微生物在PAHs降解过程中起到很大的作用。  相似文献   

9.
高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。分别以石油污染土壤和焦化废水活性污泥为菌源,分离出芘降解菌和混合PAHs(菲、荧蒽和芘)降解菌共14株并对其降解性能进行对比研究。结果表明,筛选得到的菌株分别属于9个菌属,其中2种菌源共有的菌属为Mycobacterium sp.、Ralstonia sp.和Shinella sp.。芘和PAHs的高效降解菌(CP16和CM32)均属于分支杆菌属(Mycobacterium),来源于焦化废水活性污泥;菌株CP16对芘(50mg/L)的7 d降解率为74.99%,CM32对PAHs(菲50 mg/L、荧蒽和芘各10 mg/L)的7 d降解率为100%。因此,以焦化废水活性污泥为菌源更有利于获得高效的多环芳烃降解菌。  相似文献   

10.
植物混种原位修复多环芳烃污染农田土壤   总被引:2,自引:1,他引:1  
通过比较实验前后土壤微生物主要类群数量、PAHs降解菌数量、土壤PAHs含量和植物不同部位PAHs含量变化,评价植物单种和混种野外原位修复多环芳烃(PAHs)污染农田土壤的效果。结果显示,150 d天生长期内,黑麦草/小麦混种及黑麦草/蚕豆混种修复效果最好,对土壤PAHs总量的降解率分别达到了59.4%和64.8%。同时,这2个混种处理土壤细菌、真菌和PAHs降解菌数量分别显著高于相应的小麦、蚕豆和黑麦草单种处理。植物不同部位PAHs含量高低次序为根部>茎叶≈籽粒。混种模式下,蚕豆和小麦不同部位PAHs含量比单种模式的不同程度降低,特别是籽粒部。植物混种模式不仅显著提高了土壤PAHs的降解率,还降低了农作物体内PAHs含量,实现了边生产边修复,在污染农田土壤修复领域有着广阔的应用前景。  相似文献   

11.
经过富集、分离和纯化,从沈阳某焦化厂多环芳烃(PAHs)污染土壤中获得7株菌株B1~B7。通过初步降解实验和血平板实验,发现B4、B5、B7在15d时对PAHs总降解率均高于40%,为高效PAHs降解菌,B2为高效表面活性剂产生菌。将B4、B5、B7分别与B2等质量混合后对PAHs进行降解,发现添加B2可提高PAHs总降解率,B4+B2对PAHs的总降解率最大,在9d时平均值达到45.9%。经形态观察和16SrRNA基因序列比对,鉴定B2和B4分别归为假单胞菌属(Pseudomonas sp.)和芽孢杆菌属(Bacillus sp.)。接种B4+B2进行微生物修复实验,结果表明,接种B4+B2对PAHs污染土壤的微生物修复有明显的强化作用,在60d时PAHs总降解率达到48.1%;接种B4+B2对中环(4、5环)PAHs降解率的提高尤为明显,7种中环PAHs的平均降解率比不接种菌株的对照组提高29.6百分点。  相似文献   

12.
微生物修复技术具有经济绿色、环境友好等特征,已成为多环芳烃(PAHs)污染土壤的主要修复手段之一。然而,针对经历长期老化的污染场地土壤,微生物修复效率偏低,生物强化技术亟待进一步提高。以PAHs高效降解菌铜绿假单胞菌(Pseudomonas aeruginosa,PAE)为对象,研究了新型碳质纳米材料氧化石墨烯(GO)对PAE生长和PAHs降解的影响,探讨了GO强化PAE降解土壤PAHs的效果及其机制。结果显示:(1)50~100 mg/L GO可以显著促进PAE的生长和胞外聚合物(EPS)的分泌。(2)PAE及GO(100 mg/kg)的添加显著促进了老化土壤中PAHs的降解。(3)GO添加前期,土著微生物群落丰度下降,PAE丰度显著增加;处理后期,土壤细菌群落丰度恢复至对照组水平。适宜浓度GO的添加可以影响土壤微生物的多样性和丰度,促进PAHs的降解,然而,修复后期GO的影响力下降,土壤微生物群落呈现出“扰动—恢复”模式。研究结果有助于深入理解GO对环境微生物的效应,为PAHs污染土壤的微生物修复提供新思路。  相似文献   

13.
大豆、龙葵单作和间作对芘污染土壤的修复   总被引:1,自引:0,他引:1  
土壤多环芳烃(PAHs)污染控制是当前土壤污染防治与保护的热点问题。采用室内盆栽实验,选择PAHs中具有代表性的四环化合物芘(Pyrene)作为研究对象,研究了大豆、龙葵单作和间作对不同浓度芘污染土壤的修复效果。结果表明:低浓度的芘(10 mg/kg)在一定程度上促进了大豆的生长,而高浓度的芘(250 mg/kg)则对大豆的生长有抑制作用;龙葵的生长没有受到芘污染(10~250 mg/kg)的影响;间作对大豆、龙葵的生长均有不同程度的促进作用。污染物芘在大豆和龙葵(成熟期)中的分布情况是:地下部分地上部分;间作并未对大豆、龙葵中的芘含量造成显著影响。同一污染水平下,不同种植模式的修复效果为:大豆-龙葵间作大豆单作龙葵单作无植物对照。因此,大豆-龙葵间作是一种既能有效修复芘污染土壤,又能充分利用污染土地资源的修复模式。  相似文献   

14.
研究了固定化耐低温真菌-细菌混合菌在低温环境下,对焦化厂污染土壤中的菲(Phe)和苯并[b]荧蒽(BbF)降解的动态变化,利用高通量测序技术分析了降解过程中微生物群落多样性变化。结果表明:在低温条件下固定化混合菌对土壤中Phe、BbF的去除率远高于游离混合菌与固定化单菌,在60d的降解周期下,固定化混合菌对土壤中Phe和BbF的降解率分别可达59.61%和45.24%。处理前,土壤中细菌与真菌初始Shannon多样性指数分别为2.79和0.33,细菌远高于真菌,土壤中土著微生物以细菌为主,高丰度的细菌抑制了真菌的生长代谢。处理后,细菌的Shannon多样性指数下降至1.33,真菌的Shannon多样性指数增加至1.01,Phe和BbF的降解与细菌多样性呈负相关,且细菌多样性的降低减少了其对真菌的抑制作用。对比分析了处理前后土壤中微生物群落组成的变化,结果表明:投加固定化混合菌后,固定化混合菌中的假单胞菌(Pseudomonas sp.)SDR4和高山被孢霉(Mortierella alpina)JDR7在低温下生长代谢良好,并成为降解过程中的优势菌,其物种相对丰度分别提高至79.84%与58.63%。固定化混合菌对低温环境有良好的耐性,固定化混合菌的投加提高了菌株对多环芳烃(PAHs)的生物利用有效性,改变了土壤中微生物群落的结构和丰度,可应用于低温土壤PAHs的原位修复。  相似文献   

15.
为了提高复合污染土壤修复的微生物资源的丰富度,为混合菌群修复污染土壤积累资料,利用多环芳烃-重金属双抗培养基在污染土壤中筛选得到一株对Cu和Cd有高耐受性的芘降解真菌,经分子生物学鉴定为米曲霉。探究了米曲霉对芘污染水体的降解效果及对重金属Cu和Cd的耐受程度,利用缺乏生长基质的毒性抑制动力学模型对芘单基质降解过程进行了拟合,以期为后续共代谢、固定化的研究及实际工程应用提供一定的理论支撑。结果表明:(1)米曲霉以芘为单基质代谢时,降解率为33%;(2)米曲霉对重金属Cu和Cd的耐受浓度分别为500 mg/L和50 mg/L,分别高出国家土壤重金属二级标准5倍和83倍;(3)米曲霉对单基质芘的降解符合Crridle提出的毒性抑制动力学简化模型Sc=Sc0·Tb*cX0(1-e-bt)(R2=0.9237)。芘初始浓度Sc0=80 mg/L,米曲霉投加量X0=85 mg/L时,数值拟合得到内源呼吸常数b=0.027,生物转化量Tb*c=0.2875。该米曲霉对单基质芘及重金属Cu和Cd表现出一定的降解性能及耐受性能,故可经过适当强化后作为多环芳烃-重金属污染土壤的微生物修复菌种。  相似文献   

16.
人为制作芘(Pyr)和苯并[a]芘(Ba P)浓度分别为200 mg·kg~(-1)、100 mg·kg~(-1)的污染土样,通过羟丙基-β-环糊精(HPCD)和芘的降解菌,研究土壤中Pyr和Ba P的修复效果及对微生物群落结构的变化。通过添加10%(w/w)HPCD和5%(v/w)降解菌修复人为污染的土壤,研究发现添加HPCD和降解菌对两种多环芳烃的降解均有促进作用,且同时添加的效果依次强于单独添加HPCD、单独添加降解菌。培养14周后,和对照相比,所有处理的土样中3种酶(脱氢酶、多酚氧化酶以及荧光素二乙酸酯酶)活性均增强,且HPCD+降解菌处理效果使酶活性增强最为显著,与样品的降解效果趋势相似。通过对土壤中2种多环芳烃进行Tenax TA 6 h提取来表征生物有效性,得出土壤中Pyr的生物有效性依次为HPCD处理(M)对照处理(CK)(HPCD+降解菌)处理(MB)■降解菌处理(CKB);即HPCD可以显著增强土壤中Pyr的生物有效性,MB和CKB对土壤中Pyr的生物有效性具有减弱作用,且CKB处理的减弱效果最明显;Ba P的生物有效性依次为HPCD处理(M)■(HPCD+降解菌)处理(MB)对照处理(CK)降解菌处理(CKB);即不仅HPCD对土壤中Ba P的生物有效性增强作用,MB对Ba P的生物有效性也具有增强作用,而且CKB对土壤中Ba P的生物有效性同样具有减弱作用。高通量测序表明,培养10周后,M、MB、CK和CKB 4种样品的土壤细菌组成相似。外接种菌液会提高土壤中的细菌多样性,环糊精的添加会降低土样的细菌多样性,两者都会改变土壤的细菌群落结构。  相似文献   

17.
污水处理厂各工艺阶段多环芳烃变化规律研究   总被引:5,自引:0,他引:5  
采用固相萃取-气相色谱/氢火焰离子化检测器联用技术(SPE-GC/FID),对西安市某污水处理厂不同工艺段水体中的16种多环芳烃(PAHs)含量进行了长期监测。结果表明,原水中有13种PAHs检出,按浓度从大到小排序分别为:萘、菲、芴、芘、艹屈、二氢苊、苊、蒽、苯并(a)蒽、荧蒽、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘;原水中PAHs的总量在477.1~3 067.7 ng/L之间,平均值为1 833.1 ng/L,同国内外报道的结果相比,可认为西安市生活污水中PAHs的含量处于中等水平;二级处理工艺对PAHs有较好的去除效果,平均去除率为79%,其中,生物处理单元的贡献最大,去除率达到68%。  相似文献   

18.
以从我国最大的石油污水灌区之一——沈抚灌区污染土壤分离到的以芘为惟一碳源、能源生长的高效降解菌株ZQ5为实验材料,通过对菌株ZQ5培养条件的优化,以及采用摇瓶振荡培养方法测定菌株ZQ5对不同浓度芘的降解率,表明:菌株ZQ5在30℃振荡培养16 d后对150 mg/L芘的降解率为90.31%。通过模拟稻田施用N、P和K肥等的土壤环境,探索了无机营养元素对降解菌ZQ5降解能力的影响,发现土壤中混合加入N、P和K无机营养元素的降解率能达到82%以上,比单加某种营养元素对降解菌ZQ5的降解效果好。本研究结果可以指导稻田PAHs的原位生物修复。  相似文献   

19.
以从我国最大的石油污水灌区之一——沈抚灌区污染土壤分离到的以芘为惟一碳源、能源生长的高效降解菌株ZQ5为实验材料,通过对菌株ZQ5培养条件的优化,以及采用摇瓶振荡培养方法测定菌株ZQ5对不同浓度芘的降解率,表明:菌株ZQ5在30℃振荡培养16 d后对150 mg/L芘的降解率为90.31%。通过模拟稻田施用N、P和K肥等的土壤环境,探索了无机营养元素对降解菌ZQ5降解能力的影响,发现土壤中混合加入N、P和K无机营养元素的降解率能达到82%以上,比单加某种营养元素对降解菌ZQ5的降解效果好。本研究结果可以指导稻田PAHs的原位生物修复。  相似文献   

20.
为了构建能够稳定遗传且高效降解多环芳烃的工程菌,利用PCR技术对Pseudomonas songnenensis wp3-1的邻苯二酚-2, 3-双加氧酶(C23O)基因进行克隆,并将其与自杀性载体pUTmini-Tn5连接,得到重组载体pUTmini-Tn5-C23O。在三亲接合作用下,经mini-Tn5转座子将重组载体pUTmini-Tn5-C23O中的C23O基因整合到菌株Pseudomonas sp. wp4的染色体DNA中,最终得到基因工程菌wp4-C23O。在不同pH、温度下,菌株wp4和工程菌wp4-C23O对浓度为50 mg?L-1的芘进行降解7 d。2株菌降解最适温度为37℃、最适pH为7.5。在此条件下,工程菌wp4-C23O对芘降解率显著高于wp4菌株(P0.05),降解率提高11.45%。以PAHs降解优势菌株为受体构建工程菌可以去除石油污染土壤中的PAHs。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号