首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
活性污泥法处理污水工艺伴随大量剩余污泥的产生,有效减量污泥是污水处理厂可持续运营的关键。为了实现高效环保的降解剩余污泥,对筛选芽孢杆菌制备微生物菌剂进行了研究。提出以产酶芽孢杆菌为出发菌株,通过测定菌株对污泥混合液悬浮固体浓度(mixed liquid suspended solids,MLSS)的直接减量效果以及菌株在限制性培养基内的传代稳定性和对污泥有机质及总氮(total nitrogen,TN)的去除率,得到3株污泥高效降解菌株10001、11009和R10。实验结合扫描电镜(scanning electron microscope,SEM)优化了其菌剂的制备工艺,菌剂复配比例,最适应用pH和最佳处理时长。确定选取喷雾干燥工艺制备微生物菌剂,当10001、11009和R10菌剂添加量分别为0.45%、0.80%和0.55%(质量体积比),剩余污泥pH为7.0时,经过72 h降解处理,达到剩余污泥最佳降解效果即有机质去除率达25.4%,总氮去除率达48.8%。扫描电镜分析结果显示菌剂的失效时间约为7 d。  相似文献   

2.
微波辐照与碱联合处理污泥的试验研究   总被引:1,自引:0,他引:1  
对采用微波辐照与碱联合(简写为微波辐照/碱)处理污泥过程中污泥性质的变化进行了研究.结果表明, 在相同NaOH投加量下, 达到相同污泥减少率(减量20%左右)时,用热碱处理需要0.5 h,而微波辐照/碱处理只需120 s.微波辐照/碱处理可以加剧污泥的溶胞作用,在微波辐照功率为800 W、辐照时间为120 s、每克悬浮固体(SS)NaOH投加量为0.16 g时,SS溶解率达到19.7%;处理后污泥中溶解性COD(SCOD)增至3 107 mg/L,比处理前增加了约11倍;TN增至59.9 mg/L,比处理前增加了约2.7倍;TP增至23.9 mg/L,比处理前增加了约0.9倍;NH+4\|N减至3 mg/L左右.NH+4\|N随着NaOH投加量的增加转变成NH3逸出.  相似文献   

3.
针对高铁酸盐在酸、碱性环境下氧化性和稳定性的不同,采用pH调至1、3、5、7、9、11、13的剩余污泥,投加高铁酸盐溶液进行研究,考察污泥脱水性能(污泥比阻)以及减量化效果,包括破解液性质(氨氮NH_4~+-N、总氮TN、正磷酸盐PO43-、总磷TP、总有机碳TOC、溶解性有机物SCOD、胞外聚合物EPS)和污泥性状(混合液挥发性悬浮固体浓度MLVSS、污泥沉降比SV、污泥体积指数SVI、粒径)。结果表明:pH由低到高,破解液中各类污染物浓度总体呈现出两端高中间低的趋势,高铁酸盐在酸性和碱性条件下的氧化效果均优于中性条件。其中,pH达13时减量化效果最佳,氮素和有机物质溶出最多,然而此时的脱水性能最差;pH为1时破解液中磷素最多,达90.6 mg·L~(-1)。当pH为13,每g污泥(干重)的高铁酸盐投加量为15 mg Fe时,1 g MLVSS的污泥SCOD释放量达1.13 g,TN、SCOD、TOC释放量分别为179.3、3 507.9和1 134.3 mg·L~(-1),在达到污泥减量化效果的同时更有利于破解液的后期资源化回收和处理。  相似文献   

4.
采用一体化膜生物反应器处理模拟氨氮废水,通过改变温度、pH、DO实现了反应器中短程硝化的稳定运行。结果表明,在进水氨氮、COD分别为67~86、240~342 mg/L的情况下,当温度为30℃、进水pH为8.1时,通过逐渐降低DO至1.2mg/L,亚硝态氮得到富集,氨氮和COD的去除率均能达到80%以上,且系统的耐冲击负荷能力较好;整个运行期间保持了较高的混合液悬浮固体浓度(MLSS),处于3 200~8 210mg/L,污泥沉降比和污泥体积指数(SVI)相对稳定,SVI处于75~138mL/g。  相似文献   

5.
为解析代谢解偶联剂的污泥减量性能及机理,选用毒副作用较低的代谢解偶联剂四氯水杨酰苯胺(TCS),考察其对序批式活性污泥反应器(SBR)长期运行过程中污泥产量及运行参数的影响。结果表明,投加一定量的TCS具有较好的污泥减量化作用,添加TCS前和停用后,SBR内各指标变化均不明显,说明TCS对SBR运行没有明显影响。当SBR中污泥混合液悬浮固体(MLSS)为2 200mg/L,TCS添加量为1.6mg/L时,平均污泥产率系数由0.521mg/mg降至0.314mg/mg,污泥产量减少39.73%。TCS对有机物的去除基本没有影响,COD去除率仅下降3.03百分点,但比耗氧速率(SOUR)增加73.73%,比三磷酸腺苷(SATP)合成量减少23.90%,胞内贮存物(PHAs)含量平均增加42.28%,脱氧核糖核酸(DNA)含量无明显变化。因此,适量添加TCS不会造成细胞溶胞,但能使胞内代谢增加,使氧化磷酸化解偶联,使生物合成量减少,从而实现污泥减量化。  相似文献   

6.
好氧颗粒污泥降解甲基叔丁醚的实验研究   总被引:2,自引:2,他引:0  
以絮状活性污泥为接种污泥,以甲基叔丁醚(MTBE)为唯一碳源,通过调控运行参数,在SBR反应器中可成功培养出降解MTBE的好氧颗粒污泥.成熟的好氧颗粒污泥平均粒径为202.7 μm,污泥容积指数(SVI)为75 mg/L,污泥混合液挥发性悬浮固体(MLVSS)为1 311 mg/L,污泥表面可观察到球菌、短杆菌和长杆菌等不同菌落.反应器进水MTBE高达650 mg/L时,出水可维持在10 mg/L以下,去除率达98%以上(其中挥发部分约占25%).变性梯度凝胶电泳(DGGE)指纹图表明,稳定阶段污泥内微生物种群丰富,且种类与数量基本保持稳定.  相似文献   

7.
蛋白酶和EDTA-2Na协同作用对剩余污泥水解的影响   总被引:2,自引:0,他引:2  
采用投加蛋白酶和螯合剂乙二胺四乙酸二钠(EDTA-2Na)联合预处理剩余污泥,研究了蛋白酶浓度、温度和EDTA-2Na浓度对污泥酶法水解释碳效果的影响.结果表明,蛋白酶浓度、温度和EDTA-2Na浓度对剩余污泥水解的影响具有协同效应.在最佳蛋白酶浓度20 mg/g TS条件下,剩余污泥释放的SCOD为1 318.82 mg/L.同时,在最佳螯合剂ED-TA-2Na浓度0.20 g/g TS下,SCOD为9 014 mg/L.在20 mg/g TS的蛋白酶和0.20 g/g TS的EDTA-2Na的联合作用下,SCOD达到12 628.98 mg/L.在20 mg/g TS的蛋白酶、0.2 g/g TS的EDTA-2Na和55℃条件联合作用下,SCOD达到最大值16 878 mg/L,多糖浓度达到最大值2 695.3 mg/L,NH4+-N的浓度达到最大值156.73 mg/L.此外,在不同蛋白酶和EDTA-2Na浓度条件下,剩余污泥水解释放的SCOD符合一级动力学.  相似文献   

8.
以不同含固率剩余污泥为研究对象,在超声联合热碱预处理条件下,考察了污泥在厌氧消化过程中的减量以及细胞物质释放的特性。厌氧消化阶段,经过预处理作用的预处理泥挥发性悬浮固体(VSS)、溶解性COD(SCOD)的去除率均高于原泥,且VSS、SCOD去除率均随污泥含固率的增加而减少,SCOD去除率(X_(SCODr),%)和产气量(Y_(QY),mL/g)存在定量函数关系,即Y_(QY)=-0.148 7 X~2_(SCODr)+24.771 X_(SCODr)-775.68,同时SCOD去除率与VSS去除率(X_(VSSr),%)存在线性关系X_(SCODr)=0.533 3 X_(VSSr)+43.411。预处理对污泥在厌氧消化阶段氨氮、磷酸根磷的影响也随含固率的增大而减小,含固率为1.5%的预处理泥氨氮、磷酸根磷浓度相较原泥增幅最大,依次增长了97.3%、166.0%。  相似文献   

9.
直接驯化嗜盐菌处理高盐废水的研究   总被引:3,自引:0,他引:3  
从大连旅顺盐场底泥中筛选出适合高盐度的嗜盐菌,在序批式间歇反应器(SBR)中对其进行3.5%(质量分数)盐度的驯化,污泥混合液悬浮固体(MLSS)平均质量浓度达600mg/L。污泥比耗氧速率(SOUR)测量结果显示,内源呼吸阶段污泥SOUR为10.36mg/(g.h),外源呼吸阶段污泥SOUR达到29.09mg/(g.h),表明所筛选的嗜盐菌培养的污泥具有较高活性。利用培养的污泥进行高盐模拟废水处理试验,结果表明,对盐度为3.5%、COD为240~340mg/L的高盐废水,在每周期12h、曝气量0.6L/min、污泥MLSS为600mg/L、污泥龄为18d条件下,COD去除率达95%以上,NH4+-N去除率达61%,TP去除率达55%。改变进水有机负荷对出水COD去除影响不大,该系统耐有机负荷冲击能力较强;盐度负荷的改变对COD的去除影响不大,而NH4+-N去除率有明显变化,在3.5%和5.0%的盐度下,NH4+-N去除率分别为61%和31%。  相似文献   

10.
热处理和pH调节协同作用下污泥调质过程研究   总被引:1,自引:0,他引:1  
采用单因素实验和正交实验相结合的方式,考察了不同实验条件参数(温度、pH和反应时间)下,热处理和pH调节对污泥细胞溶出过程的影响。结果表明,污泥溶解性化学需氧量(SCOD)与反应温度、溶液pH、反应时间成正相关,其中pH对SCOD的影响最为显著,反应时间对其影响最小。污泥溶胞的最优条件:反应温度120℃,pH=11,反应时间为15 min,经过处理,SCOD可达14 810 mg/L,与总化学需氧量(TCOD)之比为49.29%,总有机碳(TOC)达4 560 mg/L,总氮(TN)则增加27%,总悬浮固体(TSS)和挥发性悬浮固体(VSS)去除率分别达22.85%和40.93%。热碱处理后污泥上清液分子量分布(MWD)状况结果显示:〉1 000 KDa MW物质含量随pH和温度的增加而增加,当pH=11时,该部分物质可从原污泥的20.94%增加到31.70%;当温度为120℃时,该部分物质可达49.83%。  相似文献   

11.
利用摇动床生物膜反应器(简称摇动床)技术具有的容积负荷高与污泥产量低的优点,在普通活性污泥池的前部填充高性能丙烯酸树脂纤维(Biofringe)填料,研究了摇动床和活性污泥法组合技术处理高浓度有机废水的有效性。结果表明,该组合技术具有很强的有机物去除能力,当进水COD平均质量浓度由1500mg/L上升到2514mg/L时,出水COD的平均去除率基本保持在96%以上;整个运行阶段的出水COD浓度均满足《污水综合排放标准》(GB8978—1996)的二级标准;当进水NH4+-N浓度增加时,NH4+-N的去除率由99.7%降低到76.5%,但是在试验运行的整个阶段,摇动床和活性污泥法组合技术系统都表现出较强的硝化能力;活性污泥池中最高的混合液悬浮固体(MLSS)质量浓度为10625mg/L,最高MLSS约为普通活性污泥法的4倍;运行结束后的污泥产率为0.186,污泥产率仅为普通活性污泥法的50%左右。  相似文献   

12.
利用蒸汽爆破装置对脱水污泥进行了预处理,研究蒸汽爆破对污泥溶解性和厌氧消化性能的影响。结果表明,经汽爆处理后污泥的絮体结构遭到部分破坏,1 MPa条件下的汽爆污泥液相中可溶性糖、挥发性脂肪酸和DNA的浓度较原污泥分别提高了806.38%、577.36%和300%,BOD5/TCOD上升了35.58%;厌氧消化过程中累积产气量和甲烷平均含量分别为320 m L和42.32%,比未处理污泥提高了611.11%和726.56%;VFAs和氨氮平均浓度分别达到107.0 mg/L和1 758.7 mg/L。同时,压强升高可进一步改善污泥溶解性和厌氧消化性能。  相似文献   

13.
剩余污泥减量化工艺条件优化研究   总被引:2,自引:1,他引:1  
运用超声处理连续流活性污泥系统中不同种类的污泥,并将其回流至原系统中,研究其剩余污泥减量化效果。按正交实验设计并进行试验,确定最优工艺条件。结果表明:当声能密度为0.6 W/mL,作用时间为5 min,超声污泥为混合污泥,回流比为7∶120时,减量效果最佳。且在该条件下经一周期的运行,污泥减量效果达到96.24%,COD由进水的830 mg/L降至44 mg/L,NH4+-N和TN分别由进水的62.43 mg/L和103.19 mg/L,降解到2.31 mg/L和6.52 mg/L,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级排放标准。  相似文献   

14.
制药污泥的脱水处理及毒性削减是当前业界的研究热点。以污泥脱水性能(污泥比阻和泥饼含固率)和污泥综合急性毒性为评价指标,对2种不同型号PAM处理污泥的投加量进行优化,讨论了污泥絮凝脱水和毒性削减的机理。研究结果表明,处理100 mL原污泥,当制药污水厂现场使用的德国天使PAM和拓普戴克TOP8321型PAM投加量分别为4mg/L和12 mg/L时,污泥脱水性能达到最佳,此时污泥比阻从0.730×1012cm/g分别降低至0.126×1012cm/g和0.034×1012cm/g,泥饼含固率从16.32%分别提高至46.89%和34.98%;在毒性削减方面,2种混凝剂都可将污泥上清液毒性由微毒降至无毒,但对污泥毒性的削减效果不明显。对2种PAM的处理成本进行估算发现,污水厂现场使用的PAM对处理该制药污泥效果更佳,且费用相对较低,但要大幅度削减制药污泥的毒性需串联相应毒性削减技术和混凝沉淀单元。  相似文献   

15.
在序批式活性污泥反应器(SBR)中接种生物絮体,利用水产循环养殖废水培养好氧颗粒污泥。在溶解氧为6.4~7.1mg/L的条件下,培养出的好氧颗粒污泥平均粒径为150μm,SBR内挥发性悬浮固体(VSS)稳定在16.33~17.47g/L,总悬浮固体(TSS)稳定在17.25~18.57g/L,好氧颗粒污泥对水产循环养殖废水具有较好的处理效果,硝态氮、溶解性有机碳、溶解性磷酸盐去除率均在90%以上。好氧颗粒污泥中粗蛋白和粗脂肪含量均高于接种生物絮体。生物絮体内松散结合胞外聚合物(LB-EPS)含量比好氧颗粒污泥高,而紧密结合胞外聚合物(TB-EPS)含量比好氧颗粒污泥低,生物絮体与好氧颗粒污泥中胞外聚合物(EPS)的主要区别成分是多糖。  相似文献   

16.
采用高铁酸钾与碱耦合工艺处理剩余污泥,分析其对污泥的减量及溶胞效果的影响。结果表明,高铁酸钾与碱耦合处理时,污泥减量效果较单独高铁酸钾处理明显提高,最佳耦合方式为高铁酸钾与碱同时投加处理,适宜的碱性物质为NaOH;高铁酸钾与碱耦合处理能有效破坏污泥絮体及细胞结构,导致污泥减量,胞外聚合物(EPS)和胞内物质大量溶出。当高铁酸钾投加量为0.24g/g(以污泥中单位质量SS的投加量计,下同),NaOH投加量为6mmol/g时,耦合处理24h后挥发性悬浮固体(VSS)去除率达25.92%,处理后的污泥离心泥饼含固率增加,污泥体积指数(SVI)降低,污泥脱水性能及沉降性能明显提高,显微镜检表明耦合处理后污泥絮体明显解离,说明高铁酸钾与碱耦合工艺具有较好的污泥减量及溶胞作用。  相似文献   

17.
原位臭氧氧化污泥减量工艺的运行效能   总被引:1,自引:0,他引:1  
采用ASBR/SBR原位臭氧污泥减量工艺,重点研究了原位臭氧氧化对SBR段污泥产率和出水水质的影响。两个相同的ASBR/SBR组合工艺同时运行,每隔3个周期向臭氧投加组SBR的曝气阶段原位间歇投加臭氧,臭氧投加量为0.027 g O3/g MLSS,连续运行40 d;对照组不投加臭氧作为对比。结果表明,原位臭氧氧化实现污泥减量约43.9%,臭氧投加组SBR段平均污泥产率系数为0.1447 g SS/g SCOD,而对照组为0.2580 g SS/g SCOD,投加组没有惰性污泥的累积,并且污泥沉淀性能得到改善。原位臭氧氧化对出水水质影响不大,投加组与对照组相比,臭氧投加3周期后的出水COD、NH4+-N、TN和TP平均值分别为47.8、0.76、14.1和6.4 mg/L,去除率分别下降了4%、2%、3%和7.7%,其中COD、NH4+-N和TN均能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。  相似文献   

18.
通过调节进水流量,维持混合液氨氮浓度在某一设定值,在保持混合液中挥发性悬浮固体(VSS)浓度稳定的条件下,采用数学模拟和实验方法研究混合液氨氮浓度对短程硝化的影响。数学模拟结果表明,维持一定的混合液氨氮浓度对实现短程硝化有帮助,较低温和较高DO条件下,可通过提高混合液氨氮浓度来实现短程硝化;混合液DO分别为0.6、1.5、3.0mg/L的条件下,20℃时需要维持混合液氨氮分别为2.0、3.0、5.0mg/L以上才能达到100%的亚硝酸盐氮累积率,维持短程硝化,10℃时则需要维持混合液氨氮分别为5.0、30.0、30.0mg/L以上。实验结果表明,在混合液DO为1.5mg/L条件下,通过调节进水流量维持混合液氨氮为20.0mg/L,实现了短程硝化过程,初步证明了数学模拟的结论。  相似文献   

19.
根据昆明市第一污水处理厂深度处理微絮凝-D型滤池工艺的运行数据,评价了工艺出水水质及总磷(TP)去除效果,同时分析了混凝剂投加量及药剂费用。结果表明,微絮凝-D型滤池工艺出水TP平均浓度为0.15 mg/L,最优水平值为0.05 mg/L,95%保证值为0.37 mg/L,TP平均去除率为63.6%。出水悬浮固体(SS)浓度95%保证值为10 mg/L。混凝剂聚合氯化铝(PAC)的投加量在1.5~4 mg Al2O3/L范围波动,去除单位TP的PAC投加量平均值为16.7 mg Al2O3/mg-P,投加比为2~8 mol-Al/mol-P。当投加比超过5时,出水TP浓度可达到0.3 mg/L以下。吨水PAC成本平均值为0.017元/t。  相似文献   

20.
采用嗜酸性硫杆菌生物淋滤联合Fenton氧化法对印染污泥脱水性能进行了研究。结果表明,生物淋滤过程中pH下降速率随着硫粉添加量增加而变快,经生物淋滤处理后污泥的脱水性能在一定程度上得到了改善。对生物淋滤后的污泥进行了Fenton氧化处理,获得的最佳反应条件为反应时间2 h,H2O2和Fe2+添加量分别为6 g/L和0.5 g/L。在该条件下,污泥上清液中总有机碳(TOC)由20.8 mg/L增加到356.6 mg/L;污泥比阻(SRF)和滤饼含水率分别由5.98×1011s2/g和88.75%减少至1.26×1011s2/g和82.85%。生物淋滤-Fenton氧化法在污泥破解程度和脱水性能改善方面均优于单独Fenton氧化法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号