首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
生物炭的制备及其性能研究   总被引:1,自引:0,他引:1  
以生物质(小麦秸秆、稻壳和木屑)为原料,KOH为浸渍剂,采用控制热分解的方法制备生物炭,并利用差热/热重分析、Boehm滴定、红外光谱、X射线衍射、碘吸附及亚甲基蓝吸附等方法对原料和生物炭的结构及性质进行了表征。实验结果表明:木屑在热解过程中质量损失最大,其次是稻壳和小麦秸秆;不同原料在相同炭化温度下制得的生物炭所含表面含氧官能团种类和总量相近,均含有烷基、芳香基及一些含氧官能团,但pH值和吸附能力差别较大,其中小麦秸秆制备的生物炭pH值最大,木屑制备的生物炭吸附能力最强;随着炭化温度的升高,生物炭表面含氧官能团总量减少,pH值升高,芳构化程度增加;生物炭吸附性能总体呈上升的趋势。  相似文献   

2.
污泥基生物炭是广泛用于处理各种环境污染物的添加剂之一。然而,关于污泥基生物炭原位钝化修复Cr污染土壤的研究还较少。以污泥与棉杆为原料,通过共热解制备污泥基生物炭,并按不同比例施加到Cr含量为33.97 mg/kg的土壤中,研究了该生物炭对土壤中Cr吸附固定的效果和机制。当添加比例由1%增加到15%时,土壤中Cr含量由34.02 mg/kg增加到38.52 mg/kg,但各处理土壤Cr浓度均低于GB 15618-2018《土壤环境质量农用地土壤污染风险管控标准(试行)》中Cr的筛选值标准。BCR顺序提取实验结果表明:该生物炭促进土壤中Cr由弱酸可提取态、可还原态向可氧化态、残渣态转化,并降低了Cr的浸出毒性。此外,该生物炭提高了土壤pH、CEC,增加了有机质和有效磷含量,有利于土壤中Cr的固定。污泥基生物炭固定土壤中Cr的机制包括离子交换、沉淀、络合作用等,但污泥基生物炭对土壤中Cr价态的影响需要深入研究。  相似文献   

3.
卢再亮  李九玉  姜军  徐仁扣 《环境科学》2012,33(10):3585-3591
采用厌氧热解方法由采自南京市生活污水处理厂的2种污泥分别在300、500和700℃下制备生物质炭,测定了污泥和污泥生物质炭的性质和重金属含量,研究了污泥和污泥生物质炭对酸性红壤的改良效果,并探讨了污泥炭中重金属的环境风险,以考察污泥生物质炭在红壤地区农用的可行性.结果表明,污泥和污泥炭中含有一定量的碱,添加污泥和污泥炭均可提高红壤的pH值,但污泥中有机氮的矿化和铵态氮的硝化会引起红壤pH波动.90 d培养实验结束时,500和700℃下制备的污泥炭的改良效果远高于污泥.污泥和污泥炭中含有丰富盐基阳离子,添加污泥和污泥炭提高了土壤交换性钙、镁、钾和钠含量,降低了土壤交换性铝和交换性H+含量.污泥制备成生物质炭后重金属含量有所增加,但除Zn和Cd外,Cu、Pb、Ni和As含量没有超过国家标准.与污泥相比,城东污泥炭中有效态重金属含量显著降低,说明热解过程可以降低有毒重金属的活性.90 d培养实验结束后,添加江心洲污泥和污泥炭处理之间土壤有效态重金属含量差异不显著;添加城东污泥炭处理,土壤大部分重金属的有效态含量低于添加污泥处理.因此,污泥生物质炭可以用作酸性土壤改良剂,与直接添加污泥相比,污泥生物质炭没有增加土壤重金属的活性和生物有效性.  相似文献   

4.
土壤活性有机碳作为土壤有机碳中活跃的化学组分,在全球碳循环中起着非常重要的作用.为了探究生物质炭输入对土壤活性有机碳的影响,以苹果枝条为原料,在300~600℃条件下制备生物质炭,在研究生物质炭基本理化性质的基础上,通过室内培养试验研究生物质炭输入对土壤活性有机碳的影响.结果表明:高温制备的生物质炭碳(C)的质量分数增加,而氢(H)和氧(O)质量分数下降,H/C及O/C比下降;生物质炭的脂肪族结构减弱,芳香性增强,稳定性升高;生物质炭输入可以显著增加土壤有机碳(SOC)含量(P0.05),且随着添加比例的增加而增加,其中以500℃制备的生物质炭对土壤有机碳库的提升效果最为明显;与对照相比,低温(≤400℃)制备的生物质炭在培养期间增加了土壤微生物量碳(MBC)、水溶性有机碳(WSOC)以及易氧化有机碳(ROC)的含量,且随着添加比例的增加而增加,培养360 d后,BC300处理平均分别增加了38.25%、82.09%和63.53%;BC400处理平均分别增加了26.07%、65.61%和48.09%,且差异均达到显著水平(P0.05);高温(400℃)制备的生物质炭在培养初期(40~60 d)增加了土壤MBC、WSOC及ROC含量,且随着添加比例的增加而增加,而在培养后期则减少了土壤MBC、WSOC、ROC含量,且随着添加比例的增加而减少,培养360 d后,BC500处理平均分别减少了0.27%、13.48%和14.67%,BC600处理平均减少7.80%、14.66%和15.79%,且差异达到显著水平(BC500处理MBC含量除外)(P0.05);生物质炭输入降低了土壤有机碳中ROC的比例,并且随着热解温度的升高以及添加比例的增加而降低.从提升土壤有机碳库及生物活性等方面考虑,在黄土高原土地区,500℃条件下制备生物质炭,既能保证有机碳具有较高的稳定性,又不至于引起土壤活性碳库的过度降低,是生物质炭在农田土壤利用的最佳制备温度.  相似文献   

5.
为改良酸化紫色土,作者采用连续30 d的室内培养实验,研究了生物质炭和石灰单独和配合施用对紫色土酸度和肥力特征的改良效果。结果表明:单独或混合施用生物质炭和石灰均能提高紫色土的pH值,降低土壤的交换酸、交换性H~+和交换性Al~(3+)的含量,且随着改良剂用量的增加,对土壤酸度的改良效果越明显。由于生物质炭的物质组成丰富,富含碱性物质、盐基离子、磷素和有机质。施用生物质炭后能显著提高土壤中水溶性和交换性盐基离子、有机质和有效磷的含量。而单独施用石灰处理仅对土壤的交换性和水溶性Ca~(2+)含量有显著的提高效果,而对土壤其余盐基离子、有机质和有效磷含量影响不显著。由于生物质炭对土壤酸度有突出的改良效果,不同处理间的改良效果大小关系为:生物质炭和石灰配合施用生物质炭单独施用石灰单独施用,说明生物质炭与石灰配施或单独施用生物质炭是快速改良酸化紫色土的有效办法。  相似文献   

6.
废弃植物生物质热解制备为生物质炭是碳源整合再利用的有效手段之一,既能减少生物质自然分解过程中CO2排放,同时,生物质炭还田还可通过调控微生物活动和碳源利用效率来减少土壤本底有机碳矿化.此外,生物质炭对土壤通气性的改善有利于CH4氧化;其多孔结构、高比表面积等性能有利于CO2及可溶性有机碳等易损耗碳源的吸附固定,促进土壤有机碳的固持,增加土壤碳库容量和质量.在农田生态系统中合理施加生物质炭有利于提高植物光合固碳能力、增加植物生物量和作物产量,具有环境和经济双重效益.因此,生物质炭可借助土壤和植物两条途径助力农田生态系统中碳的减排增汇.然而,生物质炭的内源性污染物、异质性和持久性等导致其很可能具有长期的生态环境风险,仍需深入而广泛的研究.环境友好型生物质炭的制备、生物质炭的因地制宜策略等仍然是亟待解决的难题.未来研究建议在生物质炭促生增碳的相关机理、生物质炭的长期生态效应、生物质炭基“智慧土壤”的研发以及生物质炭制备工艺标准化和生产规模化等方面加强,实现生物质资源的高效整合与绿色应用,以期助力生物质炭还田技术的推广,更好地服...  相似文献   

7.
杨彩迪  卢升高 《环境科学》2020,41(9):4246-4252
为比较秸秆直接还田和炭化还田对亚热带典型红壤酸度、养分及交换性能的动态影响,试验以水稻和油菜秸秆为材料,设置7个盆栽处理:空白(CK)、水稻秸秆直接还田(R1B0)、水稻秸秆350℃炭化还田(R1B1)、水稻秸秆550℃炭化还田(R1B2)、油菜秸秆直接还田(R2B0)、油菜秸秆350℃炭化还田(R2B1)和油菜秸秆550℃炭化还田(R2B2),秸秆按1%和相应的生物质炭施入土壤,进行水稻培育试验.在水稻秧苗期、分蘖期、灌浆期和成熟期这4个时期采集土壤,分析土壤酸度、养分和交换性能的动态变化.结果表明,红壤pH、 NH~+_4-N和NO~-_3-N含量随生长期呈现减小的趋势,而有机质、CEC和各交换性盐基离子呈现增加的趋势.秸秆直接还田和炭化还田均提高土壤pH,降低交换性酸总量,同时提高有机质含量及交换性能,且作用效果随生长期增大.成熟期时秸秆炭化还田对各项指标的作用效果均好于秸秆直接还田,秸秆原料和炭化温度对各项土壤性质的影响不同,油菜秸秆生物质炭在提高土壤pH、有机质和CEC含量方面略好于水稻秸秆生物质炭.土壤酸度、养分含量和交换性能等因子的相关分析表明,土壤交换性酸与有机质呈极显著负相关关系(R=-0.912,P0.01),与CEC呈显著负相关关系(R=-0.866,P0.05),CEC和有机质呈显著正相关关系(R=0.833,P0.05),说明三者之间密切相关.研究表明,秸秆直接还田和炭化还田均可以达到改良土壤酸性和提高养分含量的效果,在等量秸秆情况下,秸秆炭化还田对阻控土壤酸化、提高有机质含量和CEC的效果比秸秆直接还田较为明显.  相似文献   

8.
铜藻基生物炭的水热制备及性能表征   总被引:1,自引:1,他引:0  
以浙江优势大型海藻之一的铜藻为原料,采用水热炭化法制备了生物炭.同时,通过正交法,以碳回收率和得率为指标,考察了反应时间、反应温度及铜藻与去离子水质量比等因素的影响,确定制备水热炭的最佳工艺条件.结果表明,制备铜藻基水热炭的最佳工艺条件为:反应时间2 h,反应温度180℃,铜藻与去离子水质量比1/4,在此条件下,水热炭的碳回收率为65.0%,得率为51.4%.元素分析、BET、接触角测定和傅里叶红外表征结果表明,铜藻基水热炭比表面积为26.6 m2·g-1,pH值为4.8,具有较高的O/C和较低的C/N,与干法裂解炭相比,其亲水性更强,且表面具有更为丰富的含氧、含氮官能团,灰分含量更低,得率和碳回收率分别提高了53.4%和33.5%.  相似文献   

9.
近年来我国餐厨垃圾产生量已超过6 000万t,垃圾围城现象愈发严重,而填埋、焚烧等传统处理方法均存在效率低、易产生二次污染等问题。研究者在探索更有效的处理方法时发现,餐厨垃圾中含有大量的生物质,是制备生物炭的优质原料。用餐厨垃圾制备生物炭,可变废为宝,有关研究得到了广泛关注。该文综述了以餐厨垃圾为原料通过热解法和水热碳化法制备生物炭材料的研究状况;概括了生物炭在燃料、土壤修复、吸附剂和超级电容器等领域的研究进展;展望了以餐厨垃圾为原料制备生物炭技术的发展前景。  相似文献   

10.
采用S-15型生物反应器为试验装置,以生物质秸秆作为反应基质,研究了反应基质营养元素含量变化和人体粪便的减量化过程。试验过程中检测了总氮、总磷、总钾、有机质和pH值等指标,着重分析了总有机质和氮含量变化。试验结果表明生物质秸秆处理人体排泄物具有很好的减量化效果,粪便处理效率97%。终产物中有机质总量70%,pH值9.1,TN、TP、TK含量分别为2.5%、1.22%和3.07%,养分含量明显增加,是一种很好的有机肥。利用生物质降解人体排泄物充分实现了废物的资源化,具有良好的推广前景。  相似文献   

11.
研究了未标记和13C脉冲标记的水稻和杨树在不同温度下制备得到的生物质炭理化性质的差异.以水稻和杨树为原料,进行13C脉冲标记,分别在300 ℃和500 ℃下裂解,得到8种不同的生物质炭,即300 ℃和500 ℃未标记水稻生物质炭、300 ℃和500 ℃ 13C标记水稻生物质炭、300 ℃和500 ℃未标记杨树生物质炭及300 ℃和500 ℃ 13C标记杨树生物质炭,分析植物13C标记、裂解温度和原料对生物质炭主要理化性质的影响.结果表明,植物13C标记后,制备得到的生物质炭TC含量降低,固定碳含量增加,水稻生物质炭的NO3--N含量增加.随着裂解温度从300 ℃升高到500 ℃,13C标记生物质炭的灰分、pH、固定碳含量增加,DOC、TN和NH4+-N含量减少,C/N有所增加.三因素方差分析表明,制备原料是影响生物质炭的灰分、TC和固定碳含量的最重要因素,对变异的解释程度分别为0.87、0.92和0.55;裂解温度是影响生物质炭的pH、DOC、TN、NH4+-N和NO3--N含量的最重要因素,对变异的解释程度分别为0.94、0.91、0.79、0.47和0.67;生物质炭的理化性质受到制备原料、裂解温度和植物13C脉冲标记三者的交互作用的影响,尤其是制备原料和裂解温度之间的交互.进一步通过主成分分析发现,裂解温度对生物质炭的理化性质影响最大,其次是制备原料,植物13C标记的影响最小.综上所述,植物13C脉冲标记对所制备的生物质炭的主要理化性质存在明显影响,易分解碳和氮则主要受裂解温度的影响.本研究将为同位素技术在生物质炭研究中的应用提供基础数据,并为相关研究选择合适的生物质炭种类提供参考.  相似文献   

12.
改性生物炭材料对稻田原状和外源镉污染土钝化效应   总被引:17,自引:1,他引:16  
为研究改性处理后的生物炭对镉污染土壤钝化效应,以油菜秸秆制备的生物炭(BC)为原材料,通过不同处理(HNO_3氧化、NaOH碱化、KMnO_4浸渍、FeCl_3浸渍)制备改性炭材料,在室内连续培养试验中,分析了其对原土/外源镉污染土壤的钝化效应.结果表明,原炭及改性生物炭均降低了原状土壤有效态镉含量,其中Na OH和KMnO_4改性的炭材料钝化作用超过50%;在外源污染土壤中,NaOH、KMnO_4、FeCl_3改性炭材料均降低了土壤有效态镉含量,以添加10%的BC-KMnO_4较佳,降低作用超30%,HNO3改性炭却活化了3.8%~24.5%的土壤有效态镉.10%BC-KMnO_4显著降低原状土壤中可交换态镉含量达65.1%,而BC-HNO_3在外源污染土壤中活化可交换态镉含量高达20.2%.原炭及改性生物炭均增加了土壤中有机碳、盐基离子含量;原炭及NaOH、KMnO_4改性生物炭提高了土壤pH,HNO_3改性炭则降低了土壤p H;原状土中有效态镉含量与pH、交换性钠离子含量呈显著负相关,外源镉污染土中有效态镉含量则与pH、有机碳、交换性镁、钾、钠离子含量呈显著负相关.KMnO_4改性生物炭显著提高土壤pH,增加土壤有机碳和盐基离子含量,降低土壤镉活性形态含量,可作为优选的原位钝化修复材料,而HNO_3改性生物炭显著降低了土壤pH,提高了土壤有效态和可交换态镉含量,具有促进土壤镉生物有效性的风险.  相似文献   

13.
污泥基生物炭作为土壤改良剂,为污泥提供了一种可持续的资源化利用技术。但由于其中可能含有多环芳烃(PAHs)、重金属等污染物,具有潜在的环境风险,如何制备环境友好的生物炭成为后续利用的先决条件。设置热解温度为500℃,升温速率为10℃/min时,采用4种不同热解时间(1~4 h)制备污泥基生物炭,通过提取测试发现热解后PAHs均明显小于原污泥中的含量;各组分含量及PAHs总量均随着热解时间的增加先增大后减小。2 h的热解时间利于原污泥中有机质充分反应生成新的PAHs,因此PAHs总量达到最大值,超过农用限制;但由于未检出毒性最强的BaP及DahA,其毒性当量(TEQs)反而最低。1 h热解时间虽PAHs总量未超过农用标准,但TEQs最大,超过国际生物炭协会规定的阈值。综合PAHs含量和TEQs的限值,热解时间3,4 h制备的污泥基生物炭更具安全性。从节约能源的角度出发,建议选用3 h作为污泥基生物炭的热解时间。  相似文献   

14.
热解温度对浒苔基生物炭重金属特征的影响   总被引:1,自引:0,他引:1  
利用限氧控温炭化法制备浒苔基生物炭,探讨了不同热解温度(200、300、400、500和600℃)对生物炭产率、生物炭重金属(Cu、Zn、Cr、Cd、Pb、As、Hg)总量及其水溶态重金属含量的影响。结果表明:生物炭产率随热解温度升高而降低。生物炭中Cu、Zn、Cr、Cd、Pb含量较原料均有显著增加,而As和Hg含量均低于原料。总体上热解碳化可促进浒苔基生物炭中Cu、Zn、Cr、Cd及As的挥发迁移趋势,但Pb则呈现富集趋势。此外,生物炭水溶态重金属含量低于原料,且热解温度与水溶态重金属含量呈负相关性,表明热解过程可降低这些重金属的溶出。  相似文献   

15.
污泥基生物炭对垃圾渗滤液的吸附性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以城镇污水处理厂剩余污泥为原料制备生物炭,研究了其对垃圾渗滤液中污染物吸附性能,旨在探索市政污泥综合利用方法和"以废治废"的治理技术途径。结果表明:当生物炭投加量为20 g/L时,垃圾渗滤液的COD和TP去除效果最佳,去除率分别为36.76%和78.36%,NH_4~+-N去除率随生物炭投加量增加而增加;上述三者不同污染物去除的最佳反应接触时间分别为50 min、30 min和≥2 h;生物炭对重金属离子的吸附机理主要表现为离子交换作用。  相似文献   

16.
由于生物质原料来源广泛,缺乏生物炭内源污染物及其用量限制标准,极有可能将含有高内源污染物的生物炭用于环境修复,产生潜在的环境风险.采用清洁区、中度和重度污染区的巨菌草为原料制备生物炭,考察其内源铜(Cu)和镉(Cd)全量及其酸溶态含量和持久性自由基(PFRs)分布,并研究生物炭浸出液对小麦根伸长抑制率和抗氧化酶活性的影响.结果表明,重度污染区九牛生物炭Cu和中度污染区水泉生物炭中Cd含量分别是清洁区红壤生物炭Cu和Cd的3.73倍和4.43倍,九牛生物炭中酸溶态Cu含量分别是水泉和红壤生物炭的3.32倍和2.84倍,水泉和九牛生物炭中酸溶态Cd含量分别是红壤生物炭的7.95倍和5.11倍.3种生物炭中均含有相邻氧原子以碳为中心的PFRs,表现为:红壤>九牛>水泉.3种生物炭浸出液对小麦根伸长均表现为抑制作用,但均不同程度地提高了小麦幼苗超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,其中九牛生物炭浸出液对小麦根伸长抑制率最高,达到27.7%.本研究表明,生物炭中内源重金属及PFRs等污染物的共同作用对小麦幼苗产生了显著的生物毒性,后期的研究需关注生物炭内源污染物的潜在环境风险,避免产生二次污染等环境问题.  相似文献   

17.
添加生物质炭在增加土壤固碳的同时,对土壤腐殖物质组成及性质的影响是人们关注的问题.通过室内培养试验对土壤腐殖物质进行提取和分离,利用分光光度计测定了土壤胡敏酸(HA)及富里酸(FA)的光学性质,研究了不同热解温度及施用量下生物质炭对土壤腐殖物质组成及结构的影响.结果表明:生物质炭中的类腐殖酸(LHS)含量随热解温度升高逐渐降低,但其结构趋向复杂化.与对照相比,低温(≤400℃)制备的生物质炭在培养期间增加了土壤HA含量,并随着添加比例的增加而增加,培养360 d后,BC300和BC400处理平均分别增加了69.93%和48.75%,且差异达到显著水平(P0.05);FA含量在培养前期(240 d)也有所增加,但后期减少了土壤FA含量,培养360 d后,BC300和BC400处理平均分别减少了1.35%和5.19%,但差异并不显著(P0.05);高温(400℃)制备的生物质炭在培养过程中主要降低了土壤HA和FA含量(仅在培养初期阶段引起土壤HA、FA含量的短时间增加),至培养结束时,BC500处理平均分别减少了34.38%和44.48%,BC600处理平均分别减少了42.84%和49.27%,且差异均达到显著水平(P0.05).生物质炭输入显著增加了土壤胡敏素(Hu)的含量,其中以BC500处理的增加效应最大.生物质炭输入增加了土壤H/F比,提高了土壤Hu的相对含量,增加了土壤中相对稳定性碳的比例.高温制备(400℃)的生物质炭培养结束时显著降低了土壤HA及FA的色调系数(Δlg K)和E4/E6值,使土壤腐殖物质的结构复杂化,而低温制备的则相反.从提升有机碳的稳定性考虑,在黄土高原塿土地区,在500℃条件下制备生物质炭,既能保证最大程度的增加土壤稳定性有机碳库,又提高了土壤腐殖化程度,从而提高土壤质量.  相似文献   

18.
生物质炭对重金属土壤环境行为及影响机制研究进展   总被引:1,自引:0,他引:1  
综述了生物质炭基本结构特性及其影响因素,阐述了生物质炭对土壤重金属形态转变、迁移性以及生物有效性的影响,并对其作用机制做了探讨。研究发现,生物质炭基本结构特性主要与自身理化性、材料来源和制备条件相关。由此对污染土壤重金属形态转变及其运动变化产生不同影响,主要引起重金属的有效态向残渣态等无效态转变,其迁移和生物有效性降低引起植株累积重金属能力下降。其主要作用机制为吸附和固化作用,通过直接或间接改变土壤pH、有机质含量、CEC、土壤酶活性和团聚体等环境,达到修复目的。因此,在利用生物质炭钝化重金属污染土壤时,应因地制宜,筛选和施用适宜生物质材料。今后应继续探究完善其作用机制,并对修复土壤进行长期监测与防控。  相似文献   

19.
生物质炭对果园土壤团聚体分布及保水性的影响   总被引:16,自引:4,他引:12  
安艳  姬强  赵世翔  王旭东 《环境科学》2016,37(1):293-300
向土壤中施用生物质炭是增加碳吸存和改善土壤理化性质的一种重要途径.利用干筛法获得土壤不同级别团聚体,探究了果园施用不同水平、不同性质生物质炭对土壤团聚体分布及其有机碳含量、土壤孔隙度和田间持水量的影响.结果表明,与不施生物质炭的处理(CK)相比,施用生物质炭在0~10 cm土层主要减少了土壤5~8 mm、0.25 mm团聚体含量,增加了1~2 mm、2~5 mm级别团聚体含量,其中1~2 mm团聚体随生物质炭施用量增加而显著增加.施用生物质炭使0~10cm土层土壤团聚体的平均质量直径有所减小,稳定性降低.与CK相比,添加生物质炭显著增加了土壤团聚体中有机碳含量,其中1~2 mm团聚体有机碳提高幅度最大,达70%以上.施用生物质炭显著提高了1 mm级别团聚体的吸湿系数,增加了土壤总孔隙度和田间持水量.  相似文献   

20.
《环境科学与技术》2021,44(1):126-133
生物质炭广泛存在于土壤环境中,其环境行为对土壤中的污染物有重要影响。生物质炭施用到土壤后,在改变土壤养分动态、土壤污染物以及微生物活动等方面都发挥了重要作用。该文主要讨论了生物质炭在土壤环境中的行为,以及生物质炭改良对土壤理化性质(pH、容重、孔隙率、养分等)和农作物生长的影响,另外,进一步探讨了生物质炭对土壤微生物的影响机制和对土壤中有机污染物归趋的影响,并总结了生物质炭在土壤环境中长期效应方面的研究和应用中存在的不足,为生物质炭的进一步研究提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号