首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
实验构建生物阴极双室微生物燃料电池,探究在微氧条件下曝气量对其产电性能和阴极脱氮的影响.以乙酸钠为碳源,氯化铵为氮源.实验在25℃温度下,阴极持续曝气,并控制反应器内为微氧状态,富集培养短程硝化反硝化菌群.实现了在特定曝气量条件下生物阴极短程硝化反硝化脱氮.实验结果表明,在曝气量为1.64 mL·min-1的条件下,短程硝化反硝化脱氮效果最好.亚硝态氮积累率为81.70%,总氮去除率达到69.66%,最大稳定电压达0.47 V左右,库伦效率为43.8%,产电效能较好.针对实际污水处理开展相关实验,MFC阴极短程硝化反硝化总氮去除率可达到81.93%,优于全程硝化反硝化.在短程硝化反硝化的微生物群落中,Betaproteobacteria纲和Thauera菌属在短程硝化反硝化中得到了有效的富集,有利于生物脱氮,并且Nitrosomonas菌是主要的氨氧化菌属.  相似文献   

2.
垃圾渗滤液原位反硝化研究   总被引:2,自引:0,他引:2  
场外硝化-原位反硝化是垃圾填埋场氮管理的新途径.本文利用垃圾柱模拟生物反应器填埋场.研究了硝化渗滤液在填埋场内部的变迁及其对垃圾降解的影响.结果表明,硝化渗滤液回灌促进了填埋场垃圾降解,回灌的总氧化态氮(TON)被完全还原,反硝化为主要作用反应,最大TON负荷为28.6 mg(N)kg(TS)-1d-1.当负荷大于11.4 mg(N)kg(TS)-1d-1时,垃圾产甲烷受到抑制.抑制作用随负荷的增加而加强.在此过程中,反硝化逐渐代替产甲烷作用成为填埋场内垃圾降解的主要反应,产生气体以氮气为主,而非甲烷;硝化渗滤液与垃圾的长期作用也改变了填埋场的菌群结构.图5表1参18  相似文献   

3.
近年来,单级好氧和限氧污水处理系统中总氮损失的现象引起了人们的普遍关注,本文对这种现象的微生物学机理及研究现状进行了阐述,主要是儿类细菌的单独脱氮或者它们之间的协同脱氮,包括自养(亚)硝化菌单独脱氮、好氧反硝化菌单独脱氮、(亚)硝化菌和好氧反硝化菌的协同脱氮以及(亚)硝化菌和厌氧氨氧化菌的协同脱氮.与传统的硝化-反硝化脱氮工艺相比,这些脱氮新途径具有不可比拟的优越性,对于强化污水生物脱氮具有重要意义.图8参53  相似文献   

4.
以喹啉为碳源,采用序批式摇瓶考察了在不同初始pH下,喹啉反硝化降解和pH的变化.结果表明,在中性偏碱性环境(7.5—10.5)中,随着喹啉进行反硝化降解,pH呈现先下降后上升的趋势;而在酸性环境pH(4.5—6.5)中,pH持续上升.碱性越强,pH下降的幅度越大;酸性越强,pH上升的幅度越大.在酸性和碱性环境中,喹啉的降解和亚硝态氮的还原都会受到抑制,在碱性环境中亚硝态氮的还原受到的抑制比喹啉降解受到的抑制大,而在酸性环境中则相反.喹啉的羟基化使pH降低,反硝化使pH升高.这些特性组成了喹啉反硝化降解过程中pH的调节机制,当系统遭遇过酸过碱时,能将pH值调节至7.0—8.0较为适合微生物生存的范围内.  相似文献   

5.
初步实验证实螯台球菌(Chelatococcus daeguensis)TAD1在高温下具有异养硝化-反硝化的能力,为验证其可应用性,采用曝气生物滤池工艺,研究了TAD1在温度为50℃的异养硝化-反硝化性能.结果表明,TAD1在曝气生物滤池中可同时进行好氧反硝化和异养硝化.当分别以硝氮、氨氮及硝氮和氨氮为氮源时,12 h的氮去除率均达到100%,氮的去除能力分别为12.67 mg.L-.1h-1、3.62 mg.L-.1h-1及16.53 mg.L-.1h-1.虽然在脱氮过程中,亚硝盐在6 h迅速积累到76 mg.L-1(硝氮为氮源)和52.6 mg.L-1(硝氮和氨氮为氮源),但在随后的几个小时内又快速降低至0(检测限之外).因而,TAD1具有应用于高温生物脱氮工艺的能力和优势.  相似文献   

6.
一株好氧反硝化菌的分离鉴定及其混合应用特性研究   总被引:6,自引:0,他引:6  
采用溴百里酚(BTB)鉴定培养基和稀释平板法从南京市某市政污水处理厂曝气池污水样本中分离筛选得到1株好氧反硝化细菌,经16S rDNA序列同源性比较和系统发育分析初步鉴定为反硝化产碱杆菌(Alcaligenes denitrificans),并将其命名为菌株BMB-N6.研究了菌株BMB-N6在不同浓度亚硝态氮条件下的反硝化能力,运用正交试验设计探讨了该菌株最适的好氧反硝化条件,并且在实验室和大田条件下分别考察了菌株BMB-N6与蛋白质降解菌BMB-LA和氨氮脱除菌BMB-HKF复配形成的混合菌制剂的反硝化能力.结果表明,菌株BMB-N6在8 h内对亚硝态氮的去除率可达94%,其最适亚硝态氮去除条件为摇床转速50 r·min-1,C/N比值4,pH 6,温度35 ℃.在实验室条件下以菌株BMB-N6为基础制成的混合菌制剂在12 h内可去除90%的亚硝态氮,在大田应用中7 d内可去除80%的亚硝态氮.  相似文献   

7.
新型废水生物脱氮的微生物学研究进展   总被引:18,自引:0,他引:18  
生物脱氮是含氮废水处理公认的最佳处理方式,随着对生物脱氮微生物学原理研究的不断深入,许多新的生物脱氮特殊菌株或菌群及微生物转化机制不断被发现.本文在传统生物脱氮过程机理上,结合最近国内外生物脱氮的新发现,就短程硝化反硝化、同时硝化反硝化、厌氧氨氧化的微生物学原理进行了阐述.图1表2参23  相似文献   

8.
采用溴百里酚(BTB)鉴定培养基和稀释平板法从南京市某市政污水处理厂曝气池污水样本中分离筛选得到1株好氧反硝化细菌,经16SrDNA序列同源性比较和系统发育分析初步鉴定为反硝化产碱杆菌(Alcaligenes denitrificns),并将其命名为菌株BMB—N6。研究了菌株BMB—N6在不同浓度亚硝态氮条件下的反硝化能力,运用正交试验设计探讨了该菌株最适的好氧反硝化条件,并且在实验室和大田条件下分别考察了菌株BMB—N6与蛋白质降解菌BMB-LA和氨氮脱除菌BMB—HKF复配形成的混合菌制剂的反硝化能力。结果表明,菌株BMB—N6在8h内对亚硝态氮的去除率可达94%,其最适亚硝态氮去除条件为摇床转速50r·min^-1,C/N比值4,pH6,温度35℃。在实验室条件下以菌株BMB-N6为基础制成的混合菌制剂在12h内可去除90%的亚硝态氮,在大田应用中7d内可去除80%的亚硝态氮。  相似文献   

9.
生物电化学系统(BES)因兼有污染物去除与能量回收等优点,近年来已成为环境污染治理领域的关注热点. 对生物电化学技术在脱氮方面的基本原理、含氮污染物的转化途径进行综述,主要的生物脱氮过程包括阴极反硝化、阳极氨氧化以及阴极同步硝化反硝化等,而非生物脱氮过程包括NH3/NH4^+的跨膜转移、氨气逃逸等. 总结已报道的BES中主要脱氮微生物及其脱氮机制,BES中多数反硝化菌属于变形菌门(Proteobacteria);硝化细菌主要是亚硝化菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter);在同步硝化反硝化过程中,电极上的硝化、反硝化菌有明显的分层现象. 最后阐述了生物电化学脱氮技术在生活污水、渗滤液、地下水处理等领域的最新应用研究,通过改变反应器构型以及运行模式等条件构建不同BES处理各类污水,以达到去除污染物同时回收电能或资源的目的. 基于目前BES的优势,认为减少脱氮中间产物(NO2^- -N、N2O)的积累及扩大BES规模对电能输出和污染物去除效果的影响将是未来的研究方向. (图3 表2 参66)  相似文献   

10.
生物电化学系统(BES)因兼有污染物去除与能量回收等优点,近年来已成为环境污染治理领域的关注热点.对生物电化学技术在脱氮方面的基本原理、含氮污染物的转化途径进行综述,主要的生物脱氮过程包括阴极反硝化、阳极氨氧化以及阴极同步硝化反硝化等,而非生物脱氮过程包括NH_3/NH_4~+的跨膜转移、氨气逃逸等.总结已报道的BES中主要脱氮微生物及其脱氮机制,BES中多数反硝化菌属于变形菌门(Proteobacteria);硝化细菌主要是亚硝化菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter);在同步硝化反硝化过程中,电极上的硝化、反硝化菌有明显的分层现象.最后阐述了生物电化学脱氮技术在生活污水、渗滤液、地下水处理等领域的最新应用研究,通过改变反应器构型以及运行模式等条件构建不同BES处理各类污水,以达到去除污染物同时回收电能或资源的目的.基于目前BES的优势,认为减少脱氮中间产物(NO_2~--N、N_2O)的积累及扩大BES规模对电能输出和污染物去除效果的影响将是未来的研究方向.  相似文献   

11.
郭晋  陈作雁  石林  刘刚  韩立娟  安兴才 《环境化学》2019,38(12):2757-2767
研究了光催化复合氧化技术对两种典型抗生素环丙沙星和磺胺甲恶唑的降解与矿化效果.用响应面法对所采用的复合氧化反应器进行运行条件优化,然后在优化所得的最优运行条件的基础上分别探究了pH值对CIP和SMX在该复合氧化体系中降解与矿化效果的影响.结果表明,降解受pH影响较小,CIP在中性条件下更易被矿化,SMX在酸性条件下更易被矿化.最后对CIP和SMX在该体系中降解所生成的中间产物进行抑菌活性分析,结果表明,水样中的抑菌活性分别在CIP和SMX的矿化率达到34.12%和13.04%时完全消失.  相似文献   

12.
传统生物脱氮反硝化过程的生化机理及动力学   总被引:11,自引:0,他引:11  
传统生物脱氮是指以硝酸盐为电子受体的一系列生物还原反应过程,该过程是在硝酸盐还原酶、亚硝酸盐还原酶、一氧化氮还原酶和一氧化二氮还原酶的作用下完成的.反硝化的生化机理及动力学是生物脱氮技术的理论基础.为促进反硝化生物脱氮技术的进一步发展,理解反硝化一系列复杂的生化反应过程及其电子传递、能量转化模式是十分必要而有意义的.本文通过对反硝化生化反应过程相关机理的论述,系统归纳了一个涉及多种酶及多种中间产物并伴随着电子(能量)传递的复杂反硝化生化反应过程,详细总结分析了反硝化过程电子通过电子传递链从电子供体(NADH)传递到终端电子受体的传递模式,以及借助于Peter提出的化学渗透假说建立的能量产生方式.同时建议采用积分法和微分法来确定反硝化动力参数Vmax,NO3,μDmax,KS,No3-.  相似文献   

13.
OLAND生物脱氮系统运行及其硝化菌群的分子生物学检测   总被引:5,自引:0,他引:5  
采用两阶段限氧自养硝化 -反硝化生物脱氮系统 (oxygen limitedautotrophicnitrificationanddenitrificationsystem ,以下简称OLAND)处理高氨氮、低COD的废水 .应用内浸式多聚醚砜中空膜 ,实现了污泥的完全截留 ,阻止了生物量的大量洗脱 ,并通过控制溶氧在 0 .1~ 0 .3mgL-1之间 ,实现了硝化阶段出水中氨氮与亚硝态氮浓度的比例达到最适值〔1 (1.2± 0 .2 )〕 ,从而为第二阶段的厌氧氨氧化提供理想的进水 ,进而获得较高的脱氮率 .同时应用荧光原位杂交技术对硝化阶段不同时期硝化菌群的变化进行分子生物学检测 ,揭示了随溶氧浓度的降低 ,氨氧化菌的数量基本保持恒定、亚硝酸氧化菌的数量略有减少的变化规律 ,并且发现 ,在两阶段限氧自养硝化 -反硝化生物脱氮系统中氨氮的氧化主要是由Nitrosomonassp .完成 ,亚硝酸的氧化主要由Nitrobactersp .完成 .图 4表 2参 2 2  相似文献   

14.
地下水中铵态氮的迁移转化过程   总被引:1,自引:0,他引:1  
铵态氮进入地下水的主要途径是土壤淋失,通过室内土柱淋滤实验研究铵态氮在土壤中的迁移转化过程,测定不同时间和不同深度土壤中铵态氮及其转化物硝态氮和亚硝态氮的浓度变化,分析了影响铵态氮迁移转化的因素。实验表明:在土壤饱和、持续淋滤条件下,土柱中随采样深度的增加,铵态氮穿透时间延长,依次滞后;通过硝化能力分析,土柱上层发生了轻微的硝化反应,土柱底部发生了反硝化反应,导致硝态氮的浓度衰减。研究认为在铵态氮的迁移转化过程中,当入渗铵态氮浓度较低时,影响铵态氮迁移转化的显著因素是土壤对铵态氮的吸附;当入渗铵态氮浓度较大时,影响铵态氮迁移转化的显著因素是生物作用导致的铵态氮的硝化,以及土壤的渗透系数、弥散度等因素。  相似文献   

15.
好氧反硝化菌及其在生物处理与修复中的应用研究进展   总被引:5,自引:0,他引:5  
好氧反硝化菌因其生长特性与同步异养硝化好氧反硝化功能,为环境生物脱氮提供了崭新的技术思路.综述了已分离获得的好氧反硝化菌类群及其生长特性,重点阐述了好氧反硝化菌生物脱氮性能、影响因素与好氧反硝化机理,探讨了好氧反硝化在环境生物修复领域的应用.已有研究表明,好氧反硝化菌在环境生物脱氮方面具有明显的技术优势,但有关好氧反硝化反应机理、影响因素等仍待解析,以期为好氧反硝化菌固定化、活性持留以及受污染环境水体修复等研究提供理论依据.  相似文献   

16.
废水处理中的非传统脱氮途径   总被引:5,自引:0,他引:5  
根据实验室小型SBR试验的结果,证实存在其它不同于传统的硝化和反硝化的脱氮途径。结合近几年来在生物脱氮理论方面新的研究进展,指出研究非传统脱氮途径的必要性和重要性,其中很有必要的一项工作是需对硝化、反硝化和脱氮过程作出明确的定义。  相似文献   

17.
氯仿作为抑制剂对沉积物-水系统中氮转化的影响   总被引:2,自引:0,他引:2  
卢少勇  金相灿  郭建宁  盛利 《生态环境》2006,15(6):1133-1137
氯仿是土壤的营养物释放实验中常用的微生物活性抑制剂。文章探讨了在滇池沉积物-自配水系统中投加氯仿后系统中上覆水的氮质量浓度变化(上覆水初始质量浓度:总氮15.0mg·L-1,氨氮7.5mg·L-1,硝氮7.5mg·L-1)以及沉积物中的硝化和反硝化活性的变化。结果表明,实验过程中上覆水的总氮、氨氮和有机氮的质量浓度升高,硝氮的质量浓度降低,加氯仿组和未加氯仿组的总氮分别升高35.9%和46.9%。这是因为实验过程中硝化速率降低而反硝化速率升高导致的。加抑制剂组的上覆水中的总氮和氨氮质量浓度总体上高,硝氮和有机氮总体上低,说明氯仿对硝化反应的抑制作用持续到第816h,在最初和后期抑制作用更显著。加氯仿组的pH值明显高于未加氯仿组,DO质量浓度稍高于未加氯仿组。实验结束后,加氯仿组的沉积物的硝化速率和反硝化速率略低于未加氯仿组的。氯仿在沉积物-水系统中起到一定的抑制作用,使沉积物的硝化速率和反硝化速率均降低,但是硝化反硝化活性并未彻底地被抑制;而且抑制具有一定的时效性。  相似文献   

18.
废水生物脱氮中N2O和NOx来源于硝化、反硝化、厌氧氨氧化和化学反硝化等过程.电子受体和供体浓度、pH、缓冲剂类型、有机负荷、微生物种类及其相互作用等都会影响这些气态中间产物的产生.NO2能够氧化氨和强化好氧和厌氧氨氧化,NO能够阻止C2H2对好氧氨氧化活性的抑制,两者对好氧氨氧化活性的恢复至关重要.所有这些表明,废水生物脱氮的气态中间产物N2O和NOx在氮的生物转化中具有重要的正面作用,甚至必不可少.基于NO2曝气技术和Brocadiaanammoxidans与Nitrosomonas协同作用的废水生物脱氮新技术开发是今后一段时间的重要研究方向.图4参35  相似文献   

19.
研究了假单胞菌WSH 1001(Pseudomonas sp.WSH 1001)对氨氮及硝态氮去除性能的影响因素以及WSH 1001在实际污水处理中的应用情况,并将其与市售硝化菌制剂的脱氮性能进行了比较.结果表明:菌株前培养方式对后续的氮去除性能影响较大,葡萄糖或柠檬酸钠是最适碳源;在20~35℃的范围内,温度对氨氮及硝态氮的去除率没有明显影响;溶氧浓度对氨氮及硝态氮的去除效率影响很大;金属离子Cu2+、Co2+和Zn2+极大地抑制了该菌株对氨氮及硝态氮的去除能力;菌株WSH 1001在6 h内对70 mg L-1的氨氮去除率高达99.64%,总氮去除率达94.94%,在8 h内对50 mgL-1的硝态氮去除率达到了87.69%,说明该菌株同时具备硝化和反硝化的能力;当菌株WSH 1001应用于实际污水(初始氨氮和COD浓度分别为44和113 mg L-1)、并额外添加3 g L-1的丁二酸钠作为外加碳源时,氨氮去除率在6 h时达到99.23%,较其它市售硝化菌制剂脱氮性能高.该研究表明假单胞菌WSH 1001在实际污水的处理上具有较好的应用潜能.  相似文献   

20.
白酒生产过程中伴随高氮废水的产生,其中包含氨氮(NH_4~+-N)、硝氮(NO_3~--N)和亚硝氮(NO_2~--N),企业基于现有的曝气等工艺可以去除NH_4~+-N,但却难以有效去除NO_2~--N和NO_2~--N,导致总氮(TN)含量无法达到新标准(TN 20 mg/L),因此高效去除废水中的NO_3~--N和NO_2~--N成为当下的研究热点.采用上流式厌氧污泥床(up-flow anaerobic sludge blanket,UASB)生物反应器驯养活性污泥,形成稳定的微生物群系;筛选得到最佳碳源,构建了生物厌氧反硝化脱氮体系,并通过三代全长16S rRNA测序分析了体系的细菌群落结构.结果显示,在甲醇、乙酸钠、丁二酸钠、葡萄糖、酒厂原水、柠檬酸钠和MicroC多种碳源中,MicroC效果最佳,在处理高硝氮废水(NO_3~--N=531 mg/L)时,添加量为C/N=1.0,出水的NO_3~--N含量小于1 mg/L,NO_3~--N去除率达98%,COD去除率超过90%.该体系中,反硝化前期斯氏假单胞菌(Pseudomonas stutzeri)和硫杆菌(Thioclava sp.)是优势种,还原大量的NO_3~--N,而细菌多样性较低;反硝化后期微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)变成优势种,还原残留的NO_3~--N.本研究表明以MicroC为碳源的厌氧反硝化体系可实现酒厂高硝氮废水低成本且高效率的脱氮处理,物种Pseudomonas stutzeri发挥主要的反硝化作用,结果对反硝化工程有重要的指导意义.(图8表3参30)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号