首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用反硝化-沸石曝气生物滤池(ZBAF)部分亚硝化及氧氨氧化组合工艺处理老龄垃圾渗滤液,探究ZBAF部分亚硝化特性以及组合工艺的脱氮除碳性能.结果表明通过游离氨(FA)对亚硝酸盐氧化菌(NOB)的选择性抑制ZBAF可以实现老龄垃圾渗滤液稳定高效部分亚硝化,平均亚硝氮积累率(NAR)为93.8%亚硝氮产率(NPR)最高达1.659 kg·(m~(3·d)~(-1);在进水中投加葡萄糖700mg·L~(-1)后,当回流比为2.0 HRT为2.2 d时,由于反硝化与厌氧氨氧化的协同作用,组合工艺脱氮效果最佳,平均氨氮去除率(ARE)、总氮去除率(NRE)和总氮去除负荷(NRR)分别达97.2%、90.0%和0.585 kg·(m~3·d)~(-1),平均COD去除率为45.3%其中厌氧氨氧化平均NRR_(ANA)为1.060 kg·(m~3·d)~(-1)最高达1.268 kg·(m~3·d)~(-1).利用高通量测序技术分析各装置中的微生物群落结构.结果显示,反硝化细菌(Paracoccus和Comamonnas)、氨氧化细菌(AOB)(Nitrosomonas)和厌氧氨氧化菌(Candidatus Kuenenia和Candidatus Anammoxoglobus)分别为反硝化、ZBAF和厌氧氨氧化装置中的优势菌这与组合工艺稳定的脱氮性能相吻合.  相似文献   

2.
ABR工艺ANAMMOX耦合短程硝化协同脱氮处理城市污水   总被引:2,自引:2,他引:0  
厌氧氨氧化技术如能替代市政污水厂的主流工艺,将大幅降低市政污水处理能耗.故采用ABR反应器,构建除碳系统、短程硝化系统和厌氧氨氧化系统,将三者耦合成一体化短程硝化-厌氧氨氧化反应器进行城市污水脱氮.结果表明,ABR除碳系统的HRT为4.5 h时,其出水COD平均浓度为80 mg·L~(-1),不会对后续短程硝化系统产生不利影响,出水TN平均浓度为10mg·L~(-1),厌氧氨氧化系统TN容积负荷为0.36 kg·(m~3·d)~(-1).当控制DO为1~2 mg·L~(-1)时,亚硝化率能长时间维持在90%左右,有利于保证后续厌氧氨氧化系统的稳定运行.当控制温度为30℃左右,好氧区DO为1~2 mg·L~(-1)良时,短程硝化-ANAMMOX一体化ABR工艺可以对城市污水稳定高效地脱氮.  相似文献   

3.
本试验是在厌氧复合床反应器中进行垃圾渗滤液的反硝化-产甲烷的小试研究。试验结果显示,处理有机物浓度较高的垃圾渗滤液时,反硝化-产甲烷能够在厌氧复合床反应器中实现同步进行。厌氧复合床反应器对垃圾渗滤液的COD去除率可达85%,对人工模拟回流的NO3--N去除率可达到99%。在反硝化-产甲烷耦合的同一反应器中,反硝化对COD的消耗去除起主要作用.随着进水COD浓度的升高,产甲烷量增大。当进水ρ(COD)/ρ(NO3--N)>10时,下部的污泥床几乎承担了全部反硝化任务,NO3--N去除率接近反应器总去除率。  相似文献   

4.
赵晴  刘梦莹  吕慧  梁俊宇  刁兴兴  张鑫  孟了 《环境科学》2019,40(9):4195-4201
本研究从某垃圾填埋场计划将现有的垃圾渗滤液短程硝化反硝化脱氮工艺改造为短程硝化反硝化耦合厌氧氨氧化工艺的实际需求入手,以短程硝化反硝化污泥作为接种污泥,在上流式厌氧污泥床反应器(UASB)中完成厌氧氨氧化启动.探究反应器运行中的脱氮效能、氮容积负荷和氮去除负荷情况,并利用16S rRNA基因序列分析技术对长期运行条件下系统中微生物群落结构演替进行分析.结果表明,反应器经历了149 d后成功启动厌氧氨氧化,稳定运行后的进水总氮容积负荷达到4 000. 00 mg·(L·d)-1,总氮容积平均去除速率达到3 885. 76 mg·(L·d)-1,系统氨氮和亚硝酸盐氮的平均去除率均超过了95%.运行第250 d时,系统的生物多样性减少,门水平上厌氧氨氧化主要菌群Planctomycetes的丰度达到了54. 94%;属水平上Candidatus Kuenenia为主要菌属,其相对丰度达到了49. 66%.结果证明,在短程硝化反硝化基础上耦合厌氧氨氧化实现垃圾渗滤液深度处理的升级改造工艺具有可行性.  相似文献   

5.
容积负荷对ABR-MBR工艺反硝化除磷性能的影响   总被引:2,自引:2,他引:0  
吕亮  尤雯  韦佳敏  吴鹏  沈耀良 《环境科学》2018,39(1):239-246
采用连续流ABR-MBR组合工艺处理生活污水,研究不同容积负荷(volume loading rate,VLR)对该工艺反硝化除磷性能的影响,获得最佳工艺参数.试验考察ABR进水容积负荷(以COD计,下同)分别为0.76、1.01、1.51和2.27 kg·(m~3·d)~(-1)时系统去碳脱氮除磷的性能,并在各ABR容积负荷条件下考察MBR容积负荷对MBR反应器硝化性能的影响.结果表明,在ABR进水容积负荷为1.51 kg·(m~3·d)~(-1)的条件下,系统A2隔室COD去除量最大,并在MBR容积负荷为0.462 kg·(m~3·d)~(-1)时,MBR反应器中实现了短程硝化,系统NH_4~+-N和TN去除率分别达到90%和72%以上,厌氧释磷量为7.41 mg·L~(-1),缺氧吸磷量达到15.42 mg·L~(-1),出水PO_4~(3-)-P浓度低于0.5 mg·L~(-1),这表明短程硝化更有利于强化ABR-MBR系统的反硝化除磷性能.  相似文献   

6.
马斌  许鑫鑫  高茂鸿  委燕  彭永臻 《环境科学》2020,41(3):1377-1383
短程反硝化厌氧氨氧化是一种新型生物脱氮技术,应用于城市污水深度脱氮有望大幅降低外碳源投加量.本研究接种厌氧氨氧化污泥,考察了短程反硝化厌氧氨氧化的深度脱氮性能与污泥特性.结果表明,接种厌氧氨氧化污泥可迅速启动短程反硝化厌氧氨氧化系统,在进水COD/TN为2.19±0.08时,出水TN浓度为(4.82±1.84)mg·L~(-1),实现了低碳源污水深度脱氮.系统粒径大于0.20 mm的污泥占86.16%,污泥实现了颗粒化,有助于厌氧氨氧化菌在系统内的有效持留.将短程反硝化厌氧氨氧化深度脱氮应用于城市污水处理厂二沉池出水深度脱氮,可降低外碳源投加量,同时可降低污水处理厂硝化池耗氧量.  相似文献   

7.
ABR除碳-亚硝化耦合厌氧氨氧化处理城市污水   总被引:1,自引:1,他引:0  
为推进厌氧氨氧化技术应用于城市污水处理,耦合亚硝化系统和厌氧氨氧化系统,并在其前端添加ABR除碳系统,构建ABR除碳-亚硝化耦合厌氧氨氧化工艺进行城市污水脱氮除碳,采用MiSeq高通量测序技术分析污泥中微生物菌群结构的变化情况.结果表明,ABR除碳系统出水COD平均浓度120 mg·L~(-1),不会对后续亚硝化系统和厌氧氨氧化系统产生不利影响,控制亚硝化系统出水和ABR除碳出水比例为2∶1作为厌氧氨氧化系统进水,满足ANAMMOX所需NO_2~--N和NH_4~+-N基质比1∶1左右的要求.一体式反应器总氮去除率在86%~92%,出水COD浓度在20~40 mg·L~(-1).同时,实验后亚硝化系统中与反硝化作用密切相关的γ-Protebacteria纲有所增加,厌氧氨氧化系统中具有较高微生物生长速率和增强脱氮速率功能的Sphingobacteria纲显著增加,ABR除碳-亚硝化耦合厌氧氨氧化工艺能够有效用于处理城市污水脱氮除碳.  相似文献   

8.
猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究   总被引:6,自引:5,他引:1  
王欢  李旭东  曾抗美 《环境科学》2009,30(1):114-119
在常温(13~20℃)、不调节pH的条件下,采用短程硝化反硝化预处理低C/N(2左右)猪场废水,考察了反硝化与亚硝化过程,并以经过短程硝化反硝化预处理的猪场废水为进水,分析了厌氧氨氧化的脱氮效果.结果表明,采用短程硝化反硝化预处理低C/N猪场废水,可以达到去除部分COD、部分脱氮、控制出水氨氮和亚硝态氮浓度之比在1∶1左右、pH在7.5~8.0左右的目的,为厌氧氨氧化创造了进水条件,全程COD和总氮平均去除率分别为64.3%和49.1%;经过短程硝化反硝化预处理的猪场废水,其厌氧氨氧化脱氮效果稳定,氨氮、亚硝态氮、总氮的平均去除率分别为91.8%、99.3%、84.1%.  相似文献   

9.
采用间歇曝气在MBBR反应器中成功实现一段式部分硝化耦合厌氧氨氧化(PN/A)过程.结果表明,在实验温度为35℃,进水氨氮浓度为150.00mg/L,进水氮负荷为0.24kg/(m3·d),DO浓度为(1.41±0.24)mg/L条件下,反应器总氮去除效率达到83.74%.生物膜中厌氧氨氧化菌(AnAOB)和氨氧化菌(...  相似文献   

10.
通过现场试验研究了工程规模的短程硝化反应器处理实际味精废水的运行性能.结果表明,短程硝化工艺(Single Reactor High Activity Ammonia Removal Over Nitrite,SHARON)适合处理低浓度味精废水(pH值为9.36~10.49;NH4*-N浓度5b 239.70~341.23 mg·L-1;COD为1000~1500 mg·L-1).短程硝化反应器的硝化性能良好,短程硝化效率(PartialNitrification Efficiency,PNE)高达94.56%±4·30%;在反应器内pH值为9.25-9.80、游离氨(Free Ammonia,FA)浓度为20~70 mg·L-1的工况下,短程硝化反应器运行性能稳定,PNE达96.64%±4·73%,出水中(NO:-.N)/(NH;-N)为0.70~1.35,出水pH值稳定在6.50-7.00,适用于后续厌氧氨氧化工艺(Anaerobic Ammonium 0xidation ANAMMOX)处理.进水FA浓度不宜过低,若反应液中的FA浓度低于20 mg·L-1,可导致NO-3-N浓度升高,不利于NO-2-N积累.采取一次性投加石灰的方式调节废水碱度,只适用于进水NH4 -N浓度较低的情况;若进水NH4 -N浓度较高,则会导致进水pH过高而抑制亚硝酸菌生长,宜采用多次投加或分段投加石灰的方式来调节废水碱度.  相似文献   

11.
高氨氮对具有回流的PN-ANAMMOX串联工艺的脱氮影响   总被引:3,自引:3,他引:0  
李祥  崔剑虹  袁砚  黄勇  袁怡  刘忻 《环境科学》2015,36(10):3749-3755
采用具有气升回流的部分亚硝化-厌氧氨氧化串联工艺研究了进水氨氮浓度对其氮素转化特性和微生物群落的影响.结果表明,在恒定氮容积负荷2.8 kg·(m3·d)-1的条件下,当进水氨氮浓度上升到700 mg·L-1时,好氧区和厌氧区的p H值波动很小,FA浓度分别维持在5 mg·L-1、10 mg·L-1左右,未对功能微生物产生抑制.好氧区的亚硝酸盐生成速率稳定在1.5kg·(m3·d)-1,厌氧区的氮去除速率稳定在31.49 kg·(m3·d)-1,联合工艺的总氮去除速率稳定在1.67 kg·(m3·d)-1.当进水氨氮浓度上升到900 mg·L-1时,各区域FA和FNA浓度才出现上升,联合工艺的总氮去除速率稳定在1.52 kg·(m3·d)-1.厌氧区出现亚硝酸盐的积累,厌氧氨氧化细菌的活性未出现明显的抑制现象.说明在联合工艺运行过程中,回流可有效地缓解各区域p H值的大幅波动,同时稀释了高氨氮浓度所形成的FA对功能微生物的毒性作用.  相似文献   

12.
Fe2+和Fe3+对厌氧氨氧化污泥活性的影响   总被引:3,自引:2,他引:1  
李祥  黄勇  巫川  王孟可  袁怡 《环境科学》2014,35(11):4224-4229
通过接种厌氧氨氧化污泥研究了Fe离子浓度及价态变化对厌氧氨氧化污泥活性的影响.短期浓度影响结果表明,当进水铁离子浓度由0升高到5 mg·L-1时,厌氧氨氧化污泥活性因受刺激而逐渐增强;当进水铁离子浓度大于5 mg·L-1时,因厌氧氨氧化反应产碱,铁离子形成氢氧化物沉淀,生物活性未受到影响.不同价态铁离子浓度变化对厌氧氨氧化污泥活性的影响无明显区别.长期价态影响结果表明,经过71个周期培养,含Fe2+进水的厌氧氨氧化反应器R1脱氮效能(以氮计)由0.28 kg·(m3·d)-1升高到0.65 kg·(m3·d)-1,是含Fe3+进水反应器R2的1.28倍.因此Fe2+更适合厌氧氨氧化菌生长的需求.实验结果进一步表明,Fe3+易导致厌氧氨氧化反应器R2内氨氮过量转化,亚硝氮与氨氮转化比(1.17)明显低于含Fe2+进水的反应器R1内亚硝氮与氨氮转化比(1.24).  相似文献   

13.
全海水盐度抑制下厌氧氨氧化工艺的恢复特性   总被引:1,自引:1,他引:0  
采用ASBR厌氧氨氧化反应器,研究了ANAMMOX反应器在全海水盐度(100%海水比例)下的抑制及恢复特性.结果表明受到盐度抑制后,ANAMMOX反应器的容积氮去除负荷(NRR)在经过了对盐度响应的敏感期、过渡稳定期和恢复期后可以再次进入稳定期,稳定期的NRR可达0.52 kg·(m~3·d)~(-1),与对照组[10%海水比例,NRR为0.462 kg·(m~3·d)~(-1)]接近.对修正的Logistic模型和修正的Gompertz模型做了改进,拓展了模型的适应性.推荐使用再次修正的Logistic模型,对受到全海水盐度抑制后的NRR恢复过程进行模拟.通过建立ANAMMOX反应器NRR恢复时间的预测公式,得到了全海水盐度下NRR的倍增周期为11.359 d.  相似文献   

14.
目前运行容易失稳已成为制约厌氧氨氧化(ANAMMOX)工艺应用的因素之一.在保证底物不抑制的条件下,通过对实验室前期运行失稳的连续流全混反应器(CSTR)中的厌氧氨氧化污泥进行活性恢复,研究了滞留的基质浓度对ANAMMOX污泥恢复过程中颗粒化及活性的影响.结果表明,经过126d运行,ANAMMOX污泥活性获得恢复且脱氮能力明显提升.控制高、低基质浓度水平的2个反应器均能实现污泥的颗粒化及氮素的高效去除,NRR最大分别达到16. 97 kg·(m~3·d)~(-1)和14. 43 kg·(m~3·d)~(-1).随着反应器脱氮能力的提高(污泥颗粒粒径增大),R1、R2两个反应器内污泥的胞外聚合物EPS含量(以VSS计)均增大,分别由接种时的34. 45 mg·g~(-1)增大至77. 52 mg·g~(-1)和94. 18 mg·g~(-1),PN/PS由1. 89分别增大到6. 25和6. 84.在一定范围内,PN/PS比值增大有利于ANAMMOX污泥颗粒化,但PN/PS过大会导致颗粒污泥结构失稳上浮,加剧污泥流失现象.  相似文献   

15.
陆明羽  李祥  黄勇  殷记强  方文烨 《环境科学》2020,41(10):4644-4652
为了推进厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)脱氮工艺在垃圾渗滤液处理方面的应用,在某垃圾填埋场建立了不同反硝化(denitrification,DN)与短程硝化-厌氧氨氧化(partial nitrification-ANAMMOX,PN-ANAMMOX)耦合模式的中试反应器处理垃圾渗滤液,探讨其耦合模式对脱氮及微生物群落结构的影响.结果表明DN+(PN-ANAMMOX)工艺可以将DN耦合入PN-ANAMMOX进行脱氮,但随着渗滤液中有机物浓度的增加,DN+(PN-ANAMMOX)工艺的PN区的需氧量增加,Nitrosomonadaceae科菌的富集受到限制.而NO2--N的供给不足进一步导致ANAMMOX区Brocadiaceae科微生物的富集也受到限制,总氮去除速率(total nitrogen removal rate,TNRR)停留在0.44 kg ·(m3 ·d)-1.而在DN-(PN-ANAMMOX)工艺中,具有反硝化能力的Saprospiraceae科菌在DN区富集,有机物主要在DN区被降解去除,为后续PN-ANAMMOX提供了良好的低碳环境.Nitrosomonadaceae科及Brocadiaceae科菌在相应的PN区及ANAMMOX区得到富集,反应器的TNRR和总氮去除率(total nitrogen removal efficiency,TNRE)也进一步提升至0.55 kg ·(m3 ·d)-1和94.65%,实现了对NH4+-N和有机物浓度分别为2233 mg ·L-1和2712 mg ·L-1渗滤液的直接处理.其中Candidatus Kuenenia菌更能适应高基质浓度的渗滤液水质,成为ANAMMOX区的优势菌属.  相似文献   

16.
基质暴露水平对ANAMMOX微生物的生长代谢有着重要意义,目前关于基质暴露水平对ANAMMOX污泥长期富集过程中生长特性的研究少有报道.采用两个连续流搅拌反应器,在逐步提升进水负荷的过程中,研究了高基质暴露水平培养方式(R1:出水NH_4~+-N和NO_2--N浓度均为40~60 mg·L~(-1))与低基质暴露水平培养方式(R~2:出水NH_4~+-N和NO_2--N浓度均为0~20 mg·L~(-1))对ANAMMOX微生物生长量和生物活性,以及反应器脱氮效能的影响及机制.结果表明,高基质暴露水平培养方式更有利于ANAMMOX反应器脱氮性能的提升.相比之下,高基质暴露水平培养方式下获得的NLR [0. 69 kg·(m~3·d)~(-1)]和NRR [0. 41 kg·(m~3·d)~(-1)]分别是低基质暴露水平培养方式的2倍;高基质暴露水平培养方式下,ANAMMOX污泥浓度(以VSS计)和总基因拷贝数分别达到1805 mg·L~(-1)和4. 81×1012copies,更有利于ANAMMOX微生物的快速富集培养;低基质暴露水平培养方式下,ANAMMOX污泥的活性更强[以N/VSS计,0. 27 g·(g·d)~(-1)],有利于富集生物活性更高的ANAMMOX污泥.  相似文献   

17.
许静怡  杜俊  杨一烽  吕锋  夏四清 《环境科学》2018,39(8):3767-3774
分别采用SBR反应器和MBR反应器驯化培养亚硝化污泥和厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)污泥,并通过微生物包埋技术将两类污泥分别包埋,构建亚硝化-厌氧氨氧化(partial nitrification-ANAMMOX,PN/A)双菌层系统.短期实验证明该系统中亚硝化菌(ammonia oxidizing bacteria,AOB)和ANAMMOX菌在不同阶段分别起主导作用,维持系统的酸碱平衡,并实现NH+4-N的高效去除(98.8%).长期实验表明,在溶解氧受限时,PN/A双菌层系统能够有效提高系统对溶解氧的利用效率,并增强系统的稳定性和脱氮效能.在溶解氧为1.0 mg·L~(-1),进水NH+4-N质量浓度分别为200 mg·L~(-1)和400 mg·L~(-1)时,对照组脱氮效率仅为58.1%和61.4%,而PN/A双菌层系统脱氮效率均稳定在80%左右;溶解氧为3.0mg·L~(-1),进水NH+4-N质量浓度为400 mg·L~(-1)时,PN/A双菌层系统总氮去除率达87.9%,总氮积累负荷(NLR)为0.4kg·(m3·d)-1,总氮去除负荷(NRR)为12.8 mg·(g·h)-1.  相似文献   

18.
一段式亚硝化厌氧氨氧化SMBBR处理中低浓度氨氮废水   总被引:2,自引:1,他引:1  
在常温条件下,采用一段式亚硝化厌氧氨氧化SMBBR处理中低氨氮浓度废水.结果表明,在进水氨氮浓度为100 mg·L-1,溶解氧为0.4~0.7 mg·L-1条件下,负荷(以N计)为0.16 kg·(m3·d)-1,去除率可达(51.58±6.80)%,实现了一段式亚硝化厌氧氨氧化的稳定运行.AOB、ANAMMOX和NOB活性分别稳定在(2253.21±502.10)、(4847.46±332.89)和(1455.17±473.83)mg·(m2·d)-1,AOB和ANAMMOX菌之间形成了良好的协同作用.高通量结果显示,Ca.Brocadia(ANAMMOX)、Nitrosomonas(AOB)和Nitrospira(NOB)占比分别为11.57%、1.01%和0.94%.一段式部分亚硝化厌氧氨氧化工艺的稳定运行为厌氧氨氧化技术处理中低浓度氨氮废水提供了参考.  相似文献   

19.
中常温变化对PN-ANAMMOX联合工艺脱氮效果的影响   总被引:4,自引:4,他引:0  
袁砚  朱亮 《环境科学》2016,37(11):4289-4295
通过接种成熟的亚硝化膜和厌氧氨氧化污泥,研究了中常温变化对PN-ANAMMOX联合工艺脱氮速率的影响及微生物群落的变化.结果表明,常温下能够实现PN-ANAMMOX联合脱氮,并且脱氮速率达到0.5 kg·(m~3·d)~(-1).但是PN过程亚硝化速率下降,ANAMMOX菌活性未得到充分发挥,导致PN-ANAMMOX联合工艺脱氮速率远低于中温条件下的1.75kg·(m~3·d)~(-1),出水水质较差.温度的上升易导致NOB的快速生长,PN过程失稳,但是通过增加回流量可对NOB的活性进行有效地控制.QPCR分析结果进一步表明接种中温环境下的AOB和ANAMMOX微生物在常温条件下不利于生长,出现部分死亡;当恢复到中温的环境时,相应的功能微生物出现了快速地生长.因此,在PN-ANAMMOX联合工艺的运行过程中应尽可能地满足功能微生物适宜的温度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号