首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Surfactants are amphiphilic molecules that reduce aqueous surface tension and increase the solubility of hydrophobic organic compounds (HOCs). Surfactant-amended remediation of HOC-contaminated soils and aquifers has received significant attention as an effective treatment strategy - similar in concept to using soaps and detergents as washing agents to remove grease from soiled fabrics. The proposed mechanisms involved in surfactant-amended remediation include: lowering of interfacial tension, surfactant solubilization of HOCs, and the phase transfer of HOC from soil-sorbed to pseudo-aqueous phase. However, as with any proposed chemical countermeasures, there is a concern regarding the fate of the added surfactant. This review summarizes the current state of knowledge regarding nonionic micelle-forming surfactant sorption onto soil, and serves as an introduction to research on that topic. Surfactant sorption onto soil appears to increase with increasing surfactant concentration until the onset of micellization. Sorbed-phase surfactant may account for the majority of added surfactant in surfactant-amended remediation applications, and this may result in increased HOC partitioning onto soil until HOC solubilization by micellar phase surfactant successfully competes with increased HOC sorption on surfactant-modified soil. This review provides discussion of equilibrium partitioning theory to account for the distribution of HOCs between soil, aqueous phase, sorbed surfactant, and micellar surfactant phases, as well as recently developed models for surfactant sorption onto soil. HOC partitioning is characterized by apparent soil-water distribution coefficients in the presence of surfactant.  相似文献   

2.
We conducted a laboratory study to assess the efficiency of nonionic and anionic surfactants in combination with a sparing quantity of ethylenediaminetetraacetate (EDTA) to simultaneously extract heavy metals (HMs) and polychlorinated biphenyl (PCB) compounds from a field-contaminated soil. A soil wash that mobilized both HMs and PCBs was combined with back-extraction with hexane to remove PCBs from the aqueous wash. The aqueous washing suspension was then regenerated by precipitation of the HMs induced by corrosion and hydrolysis of zero-valent Mg to provide a cleaned soil and innocuous extract. Finally, the washing suspension was recycled twice to mobilize more contaminants from the soil particulate fraction. After ultrasonic equilibration, EDTA in admixture with a nonionic surfactant did not appreciably change the efficiency of mobilization of most heavy metals (Al, Cd, Cr, Fe Mn, Ni, and Zn), but did increase the recovery of Cu and Pb. The release of EDTA from HM complexes was efficient for most metals (99%) but was influenced by the chemical characteristics of the surfactant. The EDTA recovery (62-65%) after three cycles of soil washing, hexane back-extraction, and Mg(0) treatment was similar for all reagent combinations. In toto, these studies demonstrate that after treatment with ultrasound, selected heavy metals can be coextracted efficiently from soil with a single washing suspension containing EDTA and a nonionic surfactant.  相似文献   

3.
Soil solution chemistry influences the sorption and transport behavior of hydrophobic organic compounds (HOCs) in soil. We used both batch and column studies to investigate the influence of ionic strengths (0.03 and 1.5 M) and flow velocities (12 and 24 cm h-1) on sorption and transport of naphthalene (NAP) in aggregated soil. Sorption parameters such as the Freundlich coefficient (Kf) and exponent (n) calculated from batch studies and column experiments were also compared. Retardation of NAP transport was greater at higher solution ionic strength, which may be attributed to greater sorption affinity due to enhanced aggregation of the sorbent. The effect of ionic strength on sorption of NAP observed in the batch study was consistent with the results from the column study. The Kf and n values obtained from the batch study for the two ionic strengths ranged from 7.8 to 13.7 and 0.68 to 0.80, respectively, whereas the Kf and n values obtained from the column study ranged from 7.9 to 9.9 and 0.73 to 0.85, respectively. The effluent breakthrough curve (BTC) of NAP at a flow rate of 24 cm h-1 showed significant chemical and physical nonequilibrium behavior, implying that a considerable amount of sorption in aggregated soil was time dependent when flow was relatively fast. The BTCs calculated with the parameters determined from batch studies compared poorly with the measured BTCs. The potential for nonequilibrium transport should be incorporated in models used for predicting the fate and transport of HOCs. Furthermore, caution is required when extrapolating the results from batch studies, especially for aggregated soils.  相似文献   

4.
Clay minerals and zeolites have large cation exchange capacities, which enable them to be modified by cationic surfactant to enhance their sorption of organic and anionic contaminants. In this study, the influence of quaternary ammonium surfactants on sorption of five metal cations (Cs+, Sr+, La3+, Pb2+, and Zn2+) onto a clinoptilolite zeolite was investigated. Generally, the metal cation sorption capacity and affinity for the zeolite decreased, indicating that presorbed cationic surfactants blocked sorption sites for metal cations, as the surfactant loading on the zeolite increased. Cesium and Pb2+ sorption was affected to a small extent, indicating that selective sorption for Cs+ and specific sorption for Pb2+ play an important role in addition to cation exchange. Sorption of cationic surfactants on zeolite preloaded with different metal cations showed a strong correlation with the chain length of the surfactant tail group, while the roles of the charges and types of the metal cations were minimal. As the chain length increases, the critical micelle concentration decreases and the surfactant molecules become more hydrophobic, resulting in progressive bilayer coverage. Desorption of presorbed metal cations by cationic surfactants was strongly affected by the surfactant chain length and metal type. More metal cations, particularly Sr2+ and Zn2+, desorbed with an increase in surfactant chain length. The results, in combination with those from organic and oxyanion sorption on surfactant-modified zeolite, may be used for future surfactant modification to target sorption and desorption of a specific type of contaminant or a mixture of different types of contaminants.  相似文献   

5.
The bioavailability and biodegradation of polycyclic aromatic hydrocarbons (PAHs) can be increased through the addition of surfactants. Previous studies of this nature have been conducted under mesophilic conditions. Hence, the aim of the present study was to investigate the effects of synthetic surfactants and biosurfactants on solubilization and degradation of phenanthrene (PHE) in a series of batch solution experiments under thermophilic conditions. Tween 80, Triton X-100, and biosurfactants produced from Pseudomonas aeruginosa strain P-CG3 (P-CG3) and Pseudomonas aeruginosa ATCC 9027 (P. 9027) were used in this study. Surfactants effectively enhanced the solubility of PHE at 50 degrees C and the biosurfactant from P-CG3 was most effective with a 28-fold increase in apparent solubility of PHE at a concentration of 10 x critical micelle concentration (CMC) compared with the controls. However, addition of synthetic surfactants or biosurfactants inhibited the biodegradation of PHE in mineral salts medium by an isolate Bacillus sp. B-UM. Degradation of PHE diminished with increasing surfactant concentrations, and PHE degradation was completely inhibited for all the surfactants tested when the concentrations were greater than their respective CMC. The growth test suggested that Tween 80 and biosurfactants were degradable, but preferential utilization of these surfactants as substrates was not the mechanism for explaining the inhibition of PHE biodegradation. Because of the hydrophobic property of B-UM, degradation inhibition of PHE by surfactants was probably due to the reduction of direct contact between bacterial cells and PHE.  相似文献   

6.
One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of (15)N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of (15)N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290-300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.  相似文献   

7.
In studies that have explored the potential environmental impacts of manufactured nanomaterials, the atmosphere has largely been viewed as an inert setting that acts merely as a route for inhalation exposure. Manufactured nanomaterials will enter the atmosphere during production, use, and disposal, and rather than simply being transported, airborne nanoparticles are in fact subject to physical and chemical transformations that could modify their fate, transport, bioavailability, and toxicity once they deposit to aqueous and terrestrial ecosystems. The objective of this paper is to review the factors affecting carbonaceous nanomaterials' behavior in the environment and to show that atmospheric transformations, often overlooked, have the potential to alter nanoparticles' physical and chemical properties and thus influence their environmental fate and impact. Atmospheric processing of naturally occurring and incidental nanoparticles takes place through coagulation, condensation, and oxidation; these phenomena are expected to affect manufactured nanoparticles as well. It is likely that carbonaceous nanomaterials in the atmosphere will be oxidized, effectively functionalizing them. By influencing size, shape, and surface chemistry, atmospheric transformations have the potential to affect a variety of nanoparticle-environment interactions, including solubility, interaction with natural surfactants, deposition to porous media, and ecotoxicity. Potential directions for future research are suggested to address the current lack of information surrounding atmospheric transformations of engineered nanomaterials.  相似文献   

8.
We conducted a laboratory study to assess the feasibility of a washing process with nonionic and anionic surfactants in combination with ethylenediaminetetraacetate (EDTA) for the simultaneous mobilization of heavy metals and polychlorinated biphenyls (PCBs) from a field-contaminated soil. Unit processes consisting of complexometric extraction and surfactant-assisted mobilization were combined with reagent regeneration and detoxification steps to generate innocuous products. Ten minutes of ultrasonic mixing of the soil with a combination of 30 mL L(-1) surfactant suspension and a sparing quantity (2 mmol) of EDTA mobilized appreciable quantities of PCBs, virtually all of the available Cd, Cu, Mn, and Pb, and lesser amounts of the Zn, Ni, and Cr but only small quantities of Al and Fe. Relative to individual reagents, combinations of surfactant (Brij 98, Triton X-301, or Triton XQS-20) with EDTA did not influence PCB extraction efficiencies perceptibly. Of the three surfactants, the Brij 98 proved to be the most efficient for three successive extractions with a single charge, mobilizing 83% of the PCBs, whereas companion extractions that used fresh reagent each time mobilized 87% of the soil PCB content. The decreased PCB mobilization with the same quantity of anionic surfactant (71 or 68%) resulted from losses during the EDTA regeneration process with zero-valent Mg. In toto, these studies demonstrate that PCB compounds and selected heavy metals can be coextracted efficiently from soil with three successive washes with the same washing suspension containing EDTA and a nonionic surfactant.  相似文献   

9.
Fate and transport of engineered nanomaterials in the environment   总被引:1,自引:0,他引:1  
With the fast development of nanotechnology, engineered nanomaterials (ENMs) will inevitably be introduced into the various environment. Increasing studies showed the toxiccity of various ENMs, which raises concerns over their fate and transport in the environment. This review focuses on advances in the research on environmental transport and fate of ENMs. Aggregation and suspension behaviors of ENMs determining their fate and transport in aqueous environment are discussed, with emphasis on the influencing factors, including natural colloids, natural organic matter, pH, and ionic strength. Studies on the transport of ENMs in porous media and its influencing factors are reviewed, and transformation and organismcleansing, as two fate routes of ENMs in the environment, are addressed. Future research directions and outlook in the environmental transport and fate of ENMs are also presented.  相似文献   

10.
Pi-pi interactions may play a role in association of aromatic compounds with natural organic substances. Complexation in aqueous solvents was studied between the pi donor, phenanthrene (PHEN), and model pi-acceptor species (quinones and N-heteroaromatic cations) that represent certain functional units of humic substances. Charge-transfer bands in the UV and ring-current shifts in the proton nuclear magnetic resonance (NMR) spectrum confirmed the face-to-face, pi-pi donor-acceptor nature of the bond. Complexation constants were obtained by the solubility enhancement method; solubility enhancements up to 2500 were found. Ruled out as predominant causes of solubility enhancement were monomer desolvation (i.e., "hydrophobic" effects), partitioning into micelles, pi-cation interactions, and pi-hydrogen bonding. Acceptor self-stacking and formation of higher-stoichiometry acceptor-donor complexes had to be considered in evaluating donor-acceptor equilibria in some cases. The affinity of acceptor for PHEN followed the order of increasing pi-acceptor strength and varied strongly with the degree of ring overlap with PHEN. Complexation between PHEN and the free solution faces of an acceptor was less favorable than intercalation of PHEN between two acceptor units in a stack. A positive hydrophobic effect on complexation was evident in water mixtures with acetone or methanol and found to correlate with the number of faces of PHEN requiring desolvation to form the complex. When hydrophobic effects are subtracted out, the pi-pi complex actually becomes favored as the solvent water content and polarity decline. The results suggest that phenanthrene, and by implication other donor aromatic compounds, are capable of forming pi-pi interactions with appropriate humic fragments.  相似文献   

11.
Magnetic cationic hydrogel (MCH) was synthesized, and its removal efficiency and mechanisms in regard to natural organic matter (NOM, represented by humic acid and fulvic acid) from the aqueous environment were studied. The effects of time, adsorbent dosage, initial pH, ionic strength, background ions, and NOM types were also investigated. MCH was characterized and found to have a strong magnetic character, yielding an extra advantage for recycling and reuse. Batch studies showed that the removal of Aldrich humic acid (AHA) by MCH was effective. The main mechanism for the removal of NOM is believed to be due to electrostatic interaction. NOM with larger molecular weight tended to be preferentially removed. Solutions with low pH, high ionic strength, and background electrolytes containing calcium, sulfate and bicarbonate were unfavorable for AHA removal. The adsorption-desorption of MCH was evaluated in three cycles, and demonstrated high regeneration rates.  相似文献   

12.
Plants of two wild native species from littoral areas, marguerite [Argyranthemum coronopifolium (Willd.) C.J. Humphries] and dwarf sea-lavender [Limonium pectinatum (Aiton) O. Kuntze], grown in an unheated plastic greenhouse, were sprayed 2 to 3 min per day over a 7-d period with different aqueous solutions containing (i) an anionic surfactant (S1); (ii) a solution simulating the composition of sea aerosol (S2); (iii) a solution simulating sea aerosol with anionic surfactant (S3), and (iv) deionized water alone (control). The plant resistance to sea aerosol and the ability to recover from treatments were studied. By the end of the spraying period, marguerite showed a significant reduction in growth compared with control. However, most of the growth parameters were significantly unaffected in dwarf sea-lavender when plants were treated with sea aerosol containing surfactant. Measurements of water relations variables in marguerite showed a slight decrease in leaf turgor potential after spraying with sea aerosol containing surfactant. The surfactant enhanced the foliar absorption of salt in marguerite plants, inducing reductions in leaf stomatal conductance and causing such damage in the photosynthetic apparatus that the level of net photosynthesis decreased and had not recovered by the end of the experiment. The treatments had no effect on leaf stomatal conductance and photosynthesis rate in dwarf sea-lavender plants. The response of the species studied to sea aerosol was related to the degree of salinity tolerance. Although both species are wild native plants from littoral areas, marguerite is not salt tolerant and was the most sensitive to the sea aerosol treatments, while dwarf sea-lavender, a halophyte species, was more efficient at decreasing the toxic salt content of the tissues as its growth and ornamental characteristics were not affected.  相似文献   

13.
Trace element speciation in poultry litter   总被引:8,自引:0,他引:8  
Trace elements are added to poultry feed for disease prevention and enhanced feed efficiency. High concentrations are found in poultry litter (PL), which raises concerns regarding trace element loading of soils. Trace metal cation solubility from PL may be enhanced by complexation with dissolved organic carbon (DOC). Mineralization of organo-As compounds may result in more toxic species such as As(III) and As(V). Speciation of these elements in PL leachates should assist in predicting their fate in soil. Elemental concentrations of 40 PL samples from the southeastern USA were determined. Water-soluble extractions (WSE) were fractionated into hydrophobic, anionic, and cationic species with solid-phase extraction columns. Arsenic speciation of seven As species, including the main As poultry feed additives, roxarsone (ROX; 3-nitro-4-hydroxyphenylarsonic acid) and p-arsanilic acid (p-ASA; 4-aminophenylarsonic acid), was performed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Total As concentrations in the litter varied from 1 to 39 mg kg(-1), averaging 16 mg kg(-1). Mean total Cu, Ni, and Zn concentrations were 479, 11, and 373 mg kg(-1), respectively. Copper and Ni were relatively soluble (49 and 41% respectively) while only 6% of Zn was soluble. Arsenic was highly soluble with an average of 71% WSE. Roxarsone was the major As species in 50% of PL samples. However, the presence of As(V) as the major species in 50% of the PL samples indicates that mineralization of ROX had occurred. The high solubility of As from litter and its apparent ready mineralization to inorganic forms coupled with the large quantity of litter that is annually land-applied in the USA suggests a potential detrimental effect on soil and water quality in the long term.  相似文献   

14.
An increase in the chemical oxygen demand (COD) has been noticed in most Korean reservoirs. Therefore, this research systematically investigated the causes of organic accumulation. Samples of soil affecting the quality of water of reservoirs were collected at various sources and analyzed for their organic characteristics. The COD to biochemical oxygen demand (BOD) ratio was used as the key parameter in the evaluation of non-biodegradable (NBD) organic accumulation in the reservoirs. Soil samples containing plant roots were agitated, with the supernatant showing COD/BOD ratios of less than 2.8, while those of the composted tree leaves were greater than 5.0, suggesting that humic substances produced in forest areas are a major cause of NBD organic accumulation in reservoirs. In addition, the organic fractionation of the leachate from leaching tests showed that of the various types of hydrophobic natural organic matter (NOM), the larger molecular weight humic acid makes a greater contribution than fulvic acid to the increase in the NBD COD in Korean reservoirs.  相似文献   

15.
Organic materials are widespread in natural soil and aquatic environments. Their effect on virus transport is very important in assessing the risk for contamination of ground water by viruses. This study aimed to determine how different forms (mineral-associated and dissolved) of natural organic matter influence the retention and transport of two bacteriophages (MS-2 and phiX174) in two porous media (a sand and a soil). We found that mineral-associated organic matter significantly promoted the transport of one virus (MS-2) but not the other (phiX174) in a phosphate-buffered saline solution. Similarly, MS-2 was retained less in sand columns with increasing concentrations of dissolved humic acid, while little effect was observed for phiX174 under the same conditions. The two viruses have different surface properties and thus exhibited different reactivity to the metal oxides present on sand particles and were affected differently by organic matter. Because the organic matter used in the study was negatively charged and hydrophilic, blocking of virus sorption sites and increasing of virus-medium electrostatic repulsion arising from modification of the sand and virus surface by organic matter are probably responsible for the facilitated transport. For dissolved humic acid, its competition for sorption sites with viruses was an additional mechanism involved. This study suggests that the effect of organic matter varied depending on the organic material properties and the type of viruses involved. As a general trend, the effect of organic matter was dominated by electrostatic rather than hydrophobic interactions.  相似文献   

16.
White-leaf rock-rose (Cistus albidus L.) and Montpellier rock-rose (C. monspeliensis L.) plants were sprayed 2 to 3 min per day over a 7-d period, in an unheated plastic greenhouse, with different aqueous solutions containing deionized water alone (control); an anionic surfactant (sodium dodecylbenzenesulfonate 82.5%, 50 mg L(-1)) (S1); a solution simulating the composition of sea aerosol (S2); and a solution simulating sea aerosol with anionic surfactant (S3). White-leaf rock-rose was more sensitive to sea aerosol, showing greater leaf damage and markedly decreased growth, and the presence of surfactant enhanced the phytotoxic effect leading to greater increases in mortality. Montpellier rock-rose did not appear to be more adversely affected when surfactant was used in combination with sea aerosol, and manifested slight or less severe symptoms than white-leaf rock-rose. There was a significant increase in leaf turgor potential in the plants treated with both sea aerosol treatments by osmotic adjustment effect. The decrease in photosynthesis level seems to be due to both stomatal and nonstomatal factors. The results of microscopical analysis of Montpellier rock-rose plants show that sea aerosol treatment caused alterations in the chloroplast structure, reducing the starch grain and swelling the thylakoid membranes. The results of this study indicated that Montpellier rock-rose was more tolerant to sea aerosol than white-leaf rock-rose, showing a lower reduction in plant growth and less leaf damage, probably because of its ability to compartmentalize the toxic ions at the intracellular level.  相似文献   

17.
Although most of the organic carbon in soils and sediments may be composed of humic substances, their interaction with other compounds, especially their sorption interactions, may be significantly affected by the presence of small amounts of the other components of natural organic matter (NOM). In this investigation, the influence of the lipid fraction of NOM on the sorption thermodynamics of fluorene, phenanthrene, and pyrene to several geosorbent samples was examined before and after extraction of lipids. Batch experiments were performed at the same concentration for all polycyclic aromatic hydrocarbons (PAHs) (0.025 x their solubility in water) at different temperatures (10, 20, 30, and 40 degrees C), and the thermodynamic parameters were calculated. Removal of the lipids increases the sorption capacity of the samples as well as the exothermicity of the process. The free energy change was negative for all the samples and no significant differences were noticed on lipid removal. The entropy changes were small and positive for the whole geosorbent samples, but even smaller or more negative when the lipids were removed. This indicates that the interaction of PAHs with soils and sediments in the absence of extractable lipids is stronger and the mechanisms involved may be different, changing from a partitioning-like mechanism to specific adsorption. Because of the competition between lipids and PAHs for the same sorption sites, the lipids can be viewed as an "implicit sorbate."  相似文献   

18.
Clay minerals and humic substance (HS)-clay complexes are widely distributed in soil environments. Improved predictions on the uptake of organic pollutants by soil require a better understanding of fundamental mechanisms that control the relative contribution from organic and inorganic constituents. Five selected aromatic compounds varying in electronic structure, including nonpolar phenanthrene (PHEN), 1,2,4,5-tetrachlorobenzene (TeCB), polar 1,3-dinitrobenzene (DNB), 2,6-dichlorobenzonitrile (dichlobenil [DNL]), and 1-naphthalenyl methylcarbamate (carbaryl [CBL]), were sorbed separately from aqueous solution to Na(+)-, K(+)-, Cs(+)-, and Ca(2+)-saturated montmorillonites with and without the presence of dissolved HS at pH about 6. Upon normalizing for hydrophobic effects by solute aqueous solubility, the overall trend of sorptive affinity to HS-free K(+)-clay is DNB > DNL, CBL > PHEN, TeCB, indicating preferential adsorption of the polar solutes. With the presence of HS, sorption of PHEN, TeCB, and CBL increases by several times compared with the pure clay, attributed to HS-facilitated hydrophobic partition (PHEN and TeCB) or H-bonding (CBL). The enhanced sorption of PHEN by HS is cation dependent, where Cs(+) shows the strongest facilitative effect. Coadsorption of HS does not affect sorption of DNB and DNL to clays except that of DNB to Ca(2+)-clay because cation-dipole interactions between the polar group (NO(2) or CN) of solute and weakly hydrated exchangeable cations dominate the overall sorption.  相似文献   

19.
Determination of polyacrylamide (PAM) concentration in soil waters is important in improving the efficiency of PAM application and understanding the environmental fate of applied PAM. In this study, concentrations of anionic PAM with high molecular weight in soil waters containing salts and dissolved organic matter (DOM) were determined quantitatively by size exclusion chromatography (SEC) with ultraviolet (UV) absorbance detection. Polyacrylamide was separated from interferential salts and DOM on a polymeric gel column eluted with an aqueous solution of 0.05 M KH2PO4 and then detected at a short UV wavelength of 195 nm. Analysis of PAM concentrations in soil sorption supernatants, soil leachates, and water samples from irrigation furrow streams showed that SEC is an effective approach for quantifying low concentrations (0-10 mg L(-1)) of PAM in waters containing soil DOM and salts. The method has a lower detection limit of 0.02 microg and a linear response range of 0.2 to 80 mg L(-1). Precision studies gave coefficients of variation of < 1.96% (n = 4) for > 10 mg L(-1) PAM and < 12% (n = 3) for 0.2 to 3 mg L(-1) PAM.  相似文献   

20.
Removal of uranium(VI) from contaminated sediments by surfactants   总被引:1,自引:0,他引:1  
Uranium(VI) sorption onto a soil collected at the Melton Branch Watershed (Oak Ridge National Laboratory, TN) is strongly influenced by the pH of the soil solution and, to a lesser extent, by the presence of calcium, suggesting specific chemical interactions between U(VI) and the soil matrix. Batch experiments designed to evaluate factors controlling desorption indicate that two anionic surfactants, AOK and T77, at concentrations ranging from 60 to 200 mM, are most suitable for U(VI) removal from acidic soils such as the Oak Ridge sediment. These surfactants are very efficient solubilizing agents at low uranium concentrations: ca. 100% U(VI) removal for [U(VI)]o,sorbed = 10(-6) mol kg-1. At greater uranium concentrations (e.g., [U(VI)]o,sorbed = ca. 10(-5) mol kg-1), the desorption efficiency of the surfactant solutions increases with an increase in surfactant concentration and reaches a plateau of 75 to 80% of the U(VI) initially sorbed. The most probable mechanisms responsible for U(VI) desorption include cation exchange in the electric double layer surrounding the micelles and, to a lesser extent, dissolution of the soil matrix. Limitations associated with the surfactant treatment include loss of surfactants onto the soil (sorption) and greater affinity between U(VI) and the soil matrix at large soil to liquid ratios. Parallel experiments with H2SO4 and carbonate-bicarbonate (CB) solutions indicate that these more conventional methods suffer from strong matrix dissolution with the acid and reduced desorption efficiency with CB due to the buffering capacity of the acidic soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号