首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Trihalomethanes (THMs) are halogenated hydrocarbons, and are by-products of the chlorination of drinking water. Most THMs are formed in drinking water when chlorine reacts with naturally occurring organic substances such as decomposing plant and animal materials. Risks for certain types of cancer are now being correlated with the presence of disinfection by-products (DBPs). The present research uses gas chromatography to analyze the presence and levels of THMs in drinking water samples from a variety of sources. These include (1) municipal drinking water from two south Florida counties; (2) two brands of bottled water; (3) untreated residential well water; and (4) municipal tap water passed through additional water purification systems. The results are summarized in a tabular format, and the compliance of each water with existing US EPA-mandated standards is examined. General conclusions from this study are that all the waters tested complied with federal regulations regarding THM levels, properly functioning home filtration units may be quite effective in further reducing DBP concentrations and, as expected, non-chlorinated waters such as bottled water and residential well water contain lower THM levels.  相似文献   

2.
Trihalomethanes (THMs) are potential carcinogens formed from the reaction of the disinfectant chlorine with organic matter in the source water. This study of Kansas drinking water supply lakes evaluates the relationship among THM formation potential (THMFP), organic carbon and lake trophic state (LTS). THMFP was positively correlated to organic carbon. Total THMFP and total organic carbon were positively correlated to LTS, an estimator of lake enrichment, when very turbid lakes were omitted. These very turbid lakes (due to high suspended solids concentrations) had higher than expected THMFP, based on LTS, and higher organic carbon concentrations. THM data measured in the treated drinking water were positively correlated to THMFP, total organic carbon and LTS. The levels of organic carbon that contribute to THMs are a result of lake and watershed factors related to increasing levels of enrichment and suspended sediments. These factors are controllable by appropriate management practices.  相似文献   

3.
The presence of trihalomethanes (THMs) in drinking water has attracted the attention of both researchers and professionals, because of the harmful effects of these substances on human health. A multiple regression model was developed to estimate THM concentrations in finished drinking water, using data from the Menidi Treatment Plant of Athens. A number of routinely measured characteristics--including chlorine dose, chlorophyll a, temperature, pH and bromide--of raw water, were used to generate a reliable methodology for predicting both total THM and individual species concentrations. Seasonality effects were also considered during the analysis. In general, these models were found to give acceptable fits, estimating accurately lows and highs over the annual cycle.  相似文献   

4.
Background, aim and scope

After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation.

Materials and methods

Drinking water samples were collected from different sampling points in the water treatment plant (WTP) from Gilau and the corresponding distribution system in Cluj-Napoca and also from Beclean, Dej and Jibou WTPs. The water samples were collected once a month from July 2006 to November 2007 and stored in 40-mL vials closed with Teflon lined screw caps. Water samples were preserved at 4°C until analysis after sodium thiosulfate (Na2S2O3) had been added to quench residual chlorine. All samples were analysed for THMs using headspace GC-ECD between 1 and 7 days after sampling. The sample (10 mL) was filled into 20-mL headspace vials and closed with a Teflon-lined screw cap. Thereafter, the samples were equilibrated in an oven at 60°C for 45 min. The headspace (1 mL) was then injected into the GC (Cyanopropylphenyl Polysiloxane column, 30 m × 53 mm, 3 μm film thickness, Thermo Finnigan, USA). The MDLs for THMs were determined from the standard deviation of eight standards at 1 μg/L. The MDLs for CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 0.3, 0.2, 0.3 and 0.6 μg/L, respectively. All kinetic laboratory studies were carried out only with water from the WTP Gilau. The experiments were conducted under two conditions: baseline conditions (pH 7, 21°C, 2.5 mg/L Cl2) to gain information about the change of the organic matter in the raw water and seasonally variable conditions to simulate the actual process at the treatment plant and the distribution system.

Results and discussion

This study shows that the current chlorination practice in the investigated plants complies with the THM drinking water standards of the EU. The THM concentrations in all samples taken in the four treatment plants and distributions systems were below the EU drinking water standard for TTHMs of 100 μg/L. Due to the low bromide levels in the raw waters, the main THM formed in the investigated plants is chloroform. It could also be seen that the THM levels were typically lower in water supplies with groundwater as their water resource. In one plant (Dej) with a pre-ozonation step, a significantly lower (50%) THM formation during post-chlorination was observed. Laboratory chlorination experiments revealed a good correlation between chloroform formation and the consumed chlorine dose. Also, these experiments allowed a semi-quantative prediction of the chloroform formation in the distribution system of Cluj-Napoca.

Conclusions

CHCl3 was the most important trihalomethane species observed after the chlorination of water in all of the sampled months. However, TTHM concentrations did not exceed the maximum permissible value of 100 μg/L (EU). The THM formation rates in the distribution system of Cluj-Napoca have a high seasonal variability. Kinetic laboratory experiments could be used to predict chloroform formation in the Cluj-Napoca distribution system. Furthermore, an empirical model allowed an estimation of the chloroform formation in the Gilau water treatment plant.

  相似文献   

5.

Background, aim and scope  

After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation.  相似文献   

6.
Effects of copper(II) and copper oxides on THMs formation in copper pipe   总被引:1,自引:0,他引:1  
Li B  Qu J  Liu H  Hu C 《Chemosphere》2007,68(11):2153-2160
Little is known about how the growth of trihalomethanes (THMs) in drinking water is affected in copper pipe. The formation of THMs and chlorine consumption in copper pipe under stagnant flow conditions were investigated. Experiments for the same water held in glass bottles were performed for comparison. Results showed that although THMs levels firstly increased in the presence of chlorine in copper pipe, faster decay of chlorine as compared to the glass bottle affected the rate of THMs formation. The analysis of water phase was supplemented by surface analysis of corrosion scales using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDX). The results showed the scales on the pipe surface mainly consisted of Cu2O, CuO and Cu(OH)2 or CuCO3. Designed experiments confirmed that the fast depletion of chlorine in copper pipe was mainly due to effect of Cu2O, CuO in corrosion scales on copper pipe. Although copper(II) and copper oxides showed effect on THMs formation, the rapid consumption of chlorine due to copper oxide made THM levels lower than that in glass bottles after 4 h. The transformations of CF, DCBM and CDBM to BF were accelerated in the presence of copper(II), cupric oxide and cuprous oxide. The effect of pH on THMs formation was influenced by effect of pH on corrosion of copper pipe. When pH was below 7, THMs levels in copper pipe was higher as compared to glass bottle, but lower when pH was above 7.  相似文献   

7.
Li X  Zhao HB 《Chemosphere》2006,62(6):1028-1032
The rate of Trihalomethanes (THM) formation was experimentally observed to be first-order with respect to chlorine, and first-order with respect to humic acid precursors, and the overall reaction order was second-order. THM formation rate expression was formulated as a function of the concentration of THM Formation Potential (THMFP), residual chlorine concentration, reaction time and reaction temperature. A model is developed to estimate THM in water distribution systems. Since the calculated results are close to the measured values in the distribution system, it is suggested that this model is applicable to actual water distribution systems.  相似文献   

8.
Haloacetic acids (HAAs) and trihalomethanes (THMs) were generated in bench-scale chlorination experiments using treated waters (prior to final chlorination) of the three major drinking water utilities of the Quebec City area. The purpose was to investigate the formation and occurrence of these chlorination by-products (CBPs) on a seasonal basis. Data for HAAs, THMs and other physico-chemical parameters were produced through a six-month sampling program with variable conditions of water quality, water temperature, applied chlorine dose and reaction time. In waters from the three utilities, chloroform (THM specie), dichloroacetic and trichloroacetic acid (HAA species) were the most prevalent compounds due to the low concentrations of bromide in the utilities' raw waters. Significant differences in CBP occurrence were noted between the three utilities' chlorinated waters, mainly due to the type of disinfectant applied to raw water. The use of pre-ozonation, as opposed to pre-chlorination (or direct chlorination) in one of the utilities appears to be the major factor contributing to that utility's potential for compliance with current THM and future HAA standards. Seasonal variations in THMs and HAAs were mainly associated with variations in organic precursors and to changes in water temperature (two parameters which vary widely on a seasonal basis in surface waters of southern Quebec), with CBP occurrence at its highest in spring. Statistical correlations between HAAs and THMs were moderate and only temperature appeared to affect the preponderance of one CBP or the other. Finally, a regression analysis was carried out aimed at associating each CBP to water quality and the experimental parameters. Thanks to their predictive ability, multivariate models seem to be the tools with the best potential for decision-making purposes.  相似文献   

9.
The objectives of this research work was to evaluate the reduction of THM precursors by cationic p-DADMAC and determine the correlations between the chlorine demand and trihalomethane formation in the presence of electrolyte solutions and ambient light. The chlorine demand was found to be significantly reduced provided that the H2SO4 electrolyte was fed to the sample solutions. The amount of CHCl3 formation was also decreased when the Na2SO4 electrolyte was introduced in spite of the levels of light intensity. The p-DADMAC can not only effectively remove the turbidity but also reduce the formation of CHCl3. The optimum dosage of p-DADMAC for reducing the turbidity, TOC and CHCl3 in the humic acid and source water samples was determined and depended upon the nature of organics.  相似文献   

10.
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.  相似文献   

11.
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.  相似文献   

12.
Chuang YH  Wang GS  Tung HH 《Chemosphere》2011,85(7):1146-1153
It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development—a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Clthreshold) for biodegradation was estimated at 0.46-0.5 mg L−1. The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Clthreshold influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss.  相似文献   

13.
Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung—each has a population of <2000) on trucked service, and in Iqaluit (population ~6700), which uses a combination of trucked and piped water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of <1 MPN/100 mL with a few exceptions, and selected pathogenic bacteria and parasites were below detection limits using quantitative polymerase chain reaction (qPCR) methods. Tap water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.  相似文献   

14.
对饮用水中普遍存在的消毒副产物形式HAAs的产生、测定方法以及控制途径进行了阐述.并对影响HAAs生成的主要因素投氯量、溴的影响以及卤乙酸副产物(HAAFP)含量等进行了分析.生物活性炭技术是一种非常有效的控制HAAs含量和减少HAAFP含量的方法,对于保障饮用水安全性具有重要意义.  相似文献   

15.
水体中卤乙酸(HAAs)的产生、测定方法与控制途径   总被引:1,自引:0,他引:1  
对饮用水中普遍存在的消毒副产物形式HAAs的产生、测定方法以及控制途径进行了阐述。并对影响HAAs生成的主要因素投氯量、溴的影响以及卤乙酸副产物(HAAFP)含量等进行了分析。生物活性炭技术是一种非常有效的控制HAAs含量和减少HAAFP含量的方法,对于保障饮用水安全性具有重要意义。  相似文献   

16.
Application of chlorination for the disinfection of drinking water results in the formation of a wide range of organic compounds, called disinfection by-products (DBPs), which occur due to the reaction of chlorine with natural organic materials. The occurrence of DBPs was studied in samples from four drinking-water treatment plants (WTPs) and from the distribution network of Athens, Greece. Twenty-four compounds, which belong to different categories of DBPs, were monitored, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HAKs), chloral hydrate (CH) and chloropicrin (CP). Sampling was performed monthly for a period of two years, from three different points at each WTP and from eight points atthe distribution network. Samples were analyzed by GC-ECD methods, which included pretreatment with liquid-liquid extraction for volatile DBPs and acidic methanol esterification for HAAs. The results of the analyses have shown the presence of disinfection by-products belonging to all categories studied in all water samples collected after prechlorination. The major categories of DBPs detected were THMs and HAAs, while the other volatile DBPs occurred at lower concentrations. The concentrations of DBPs did not in any case exceed the maximum contaminant levels (MCL) set by USEPA and WHO. However, monitoring these compounds needs to be continued, because their levels could increase due to changes in the quality of water entering the water treatment plants. Reduction of the concentrations of DBPs could be achieved by optimization of the chlorination conditions, taking into account the effect of time. Moreover, research on alternative disinfection methods (e.g. ozone, chlorine dioxide, chloramines) and their by-products should be conducted to evaluate their applicability in the case of the drinking water of Greece.  相似文献   

17.
Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag+ ions (as AgNO3). The stability of the nano-silver dispersions in untreated Ottawa River water, with a dissolved organic carbon concentration of 6 mg/L, was significantly higher than the stability of the nano-silver dispersions in distilled, organic-free water. Nano-silver particles suspended in the groundwater agglomerated and were quickly and quantitatively removed from the solution. Our data confirm previous observations that natural dissolved organic matter stabilizes nano-silver particles, while the high-ionic strength of groundwater appears to favor their agglomeration and precipitation. As expected, nano-silver was not stable in Ottawa River water through the chlorination process, but survived for many days when added to the Ottawa River water after treatment with chlorine or chloramines. Stirring appeared to have minimal effect on nano-silver stability in untreated and treated Ottawa River water. The profile of DBPs formed in the presence of nAg differed significantly from the profile of DBPs formed in the absence of nAg only at the 1 mg/L nAg concentration. The differences observed consisted mainly in reduced formation of some brominated DBPs and a small increase in the formation of cyanogen chloride. The reduced formation of brominated congeners may be explained by the decrease in available bromide due to the presence of Ag+ ions. It should be noted that a concentration of 1 mg/L is significantly higher than nAg concentrations that would be expected to be present in surface waters, but these results could be significant for the disinfection of some wastewaters with comparably high nano-silver concentrations.  相似文献   

18.
Antibiotic-resistant bacteria are an emerging threat to public health during drinking water consumption and reclaimed water reuse. Several studies have shown that the proportions of antibiotic-resistant bacteria in waters may increase when exposed to low doses of UV light or chlorine. In this study, inactivation of tetracycline-resistant Escherichia coli and antibiotic-sensitive E. coli by UV disinfection and chlorination was compared to determine the tolerance of tetracycline-resistant E. coli to UV light and chlorine, and tetracycline resistance of a tetracycline-resistant E. coli population was studied under different doses of the disinfectants. Our results showed that relative to antibiotic-sensitive E. coli, tetracycline-resistant E. coli had the same tolerance to UV light and a potentially higher tolerance to chlorination. The mortality frequency distributions of tetracycline-resistant E. coli exposed to tetracycline were shifted by both chlorination and UV disinfection. When compared to the hemi-inhibitory concentrations (IC50) of tetracycline-resistant E. coli with no exposure to UV or chlorination, the IC50 of tetracycline-resistant E. coli treated with tetracycline was 40% lower when inactivation by UV light or chlorination reached 3-log but was 1.18 times greater when inactivation by chlorination reached 4.3-log. Chlorination applied to drinking water or reclaimed water treatment may increase the risk of selection for highly tetracycline-resistant E. coli.  相似文献   

19.
二氧化氯杀灭小球藻   总被引:1,自引:0,他引:1  
实验研究了二氧化氯投加量、小球藻的初始浓度、pH、有机物和氨氮含量对ClO2杀灭来自于水库水的小球藻的影响,考察了ClO2氧化与混凝工艺结合时去除小球藻的效果并对工艺条件进行优化。结果表明,ClO2在投加量1.1 mg/L下,接触10 min,小球藻的杀灭率为71.93%。小球藻的杀灭率随着ClO2投加量的增大和藻初始浓度的升高而提高,随水中有机物含量的增加而显著降低,氨氮含量对小球藻杀灭的效果影响很小。在酸性条件和碱性条件下,小球藻的杀灭率均随pH升高而急剧下降,而在中性至弱碱性区间内,藻的杀灭率随pH升高而缓慢下降。对于某以小球藻为优势藻的供水水库源水,ClO2氧化与混凝工艺结合,藻的去除率高达98.47%。除藻的最佳工艺条件为:二氧化氯投加量为0.5 mg/L,聚合氯化铝为5 mg/L,二氧化氯与混凝剂同时投加。  相似文献   

20.
通过对松花江水进行大量实验 ,找出TOC的含量、投氯量、温度和 pH值等对氯仿形成的定量关系 ,确定了饮用水氯化的优化条件 ,使饮用水氯化过程中形成的氯仿含量不超过国家饮用水的标准  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号