首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
通过对松花江水进行大量实验,找出TOC的含量、投氯量、温度和pH值等对氯仿形成的定量关系,确定了饮用水氯化的优化条件,使饮用水氯化过程中形成的氯仿含量不超过国家饮用水的标准。  相似文献   

2.
人工合成的有机化合物存在地环境中是一个严重的公众健康问题。这样的化学试剂中有65类被认为是有危害的,其中114个有机化合物已由美环保局指定为重点污染物。这些化合物的存在主要归因于缺乏适当的处理技术,目前它们在引起水系和土壤的污染。在处理过程中偶然产生的这类化合物,如氯化时产生氯仿是水污染的另一来源。现存的控制和限制这此危害的化学药品进入环境的法律包括安全饮用水法(SDWA)、清洁水法(CWA)、毒物控制  相似文献   

3.
Ⅰ、水中钛的测定简介: 钛与硫氰酸钾,二安替比林甲烷在2.3—3.0M盐酸介质中形成黄色络合物,可被氯仿萃取。在波长420毫微米处测定吸光度。大多数元素无干扰,铁和铜的干扰可用二氯化锡消除。钒在1微克以下无干扰。  相似文献   

4.
目前,国内外由于对饮用水氯化消毒而产生一些有机卤化物,已引起人们的普遍关注。美国和日本规定饮用水中卤仿含量≯100ppb,瑞典规定≯25ppb,国际卫生组织规定≯30ppb[1],[2],[3]。国规定≯soppb。我国已在饮用水中普遍检出卤仿[4]。水中卤仿的测定方法很多,本文对国内外水中三卤甲烷含量的测定方法进行了综合论述和比  相似文献   

5.
选择饮用水中经常暴露的17β-雌二醇(E2)为研究对象,考察了含有E2饮用水在氯化消毒前后的水质生物毒性变化规律。小球藻急性毒性实验结果表明,不同浓度E2(0、2、4、8、16 mg·L~(-1))单独暴露条件下,其对小球藻的生长抑制率呈现出较为明显的剂量-效应关系,即随着E2暴露浓度的升高,对小球藻的生长抑制率有所增加;在较高氯投量下(E2与氯摩尔浓度比值为1∶2和1∶5),氯化消毒后水样对小球藻的生长抑制率均高于氯化消毒前,而在低氯投量下(E2与氯摩尔浓度比值为4∶1和1∶1),水样对小球藻的生长抑制率均低于氯化消毒前,表明低氯投量可降低E2产生的水质急性毒性风险。小球藻酶活性实验结果表明,无论是SOD活力、CAT活力,还是MDA含量,并没有出现因受E2暴露和氯氧化胁迫而产生显著上升的趋势,表明E2单独暴露或E2经氯化消毒后并不会对小球藻的酶活性产生显著影响。  相似文献   

6.
水中有机成分及其对饮用水质的影响   总被引:3,自引:0,他引:3  
微量有机污染物和氯化消毒副产物对饮用水构成直接威胁,是饮用水中要重点控制的;天然大分子有机物对水质构成间接影响,导致胶体稳定性提高、增加药耗;藻类和代谢产物影响常规处理工艺效果,对水质产生不良影响。  相似文献   

7.
氯化消毒饮用水中普遍存在消毒副产物 (DBPs) ,其中主要的是三卤甲烷和卤乙酸。文章在大量国内外文献调研的基础上 ,综述了饮用水氯化消毒 DBPs的种类及副作用 ,并对主要 DBPs的预处理技术和检测方法进行了系统的介绍和比较 ,为在不同实验条件下选择 DBPs的分析检测方法提供了指导。  相似文献   

8.
自来水二氧化氯消毒控制三氯甲烷研究   总被引:1,自引:0,他引:1  
对自来水二氧化氯消毒控制三氯甲烷形成进行了试验研究 ,二氧化氯预消毒替代预氯化消毒可以降低水中的三氯甲烷 ,预消毒处理后形成三氯甲烷的反应受温度和反应时间的影响。使用二氧化氯与氯配制的混合消毒剂消毒时 ,随二氧化氯含量增加 ,水中的三氯甲烷将明显减少。  相似文献   

9.
投加氯是饮用水常用的消毒方法.自1972年美国首先报导在自来水检出可疑的致癌物质—氯仿、四氯化碳等低磷卤代烃后,各国都广泛地进行研究.大多数文献报导了自来水中低碳卤代烃来源于水源的河水受城市  相似文献   

10.
以较常见的预氯化为技术手段,考察了预氯化工艺去除饮用水中氰化物、硫化物以及水合肼等还原性污染物的效果和影响因素.结果表明:(1)实验条件下氰化物浓度随有效氯投加量的增加而下降,并在有效氯投加量>5.0 mg/L时降低到低于《生活饮用水卫生标准》(GB5749-2006)中限值(0.05mg/L),在有效氯投加量>6.0...  相似文献   

11.
Selected volatile organohalogen compounds (VOX) were investigated in urine samples from people living in different areas of the Gdańsk-Sopot-Gdynia TriCity (Poland). The analytes were isolated and preconcentrated using the so-called thin layer headspace technique with autogenous generation of the liquid sorbent. Final gas chromatographic determination was carried out by direct aqueous injection with electron capture detection. Analyte concentrations in drinking water ranged from not detected to approximately 8 microg/l (chloroform), depending on the source of drinking water in a given part of the TriCity (underground, surface or mixed). The corresponding urine levels were typically lower by about an order of magnitude. VOX levels in urine of people living in the parts of the TriCity supplied with drinking water containing elevated levels of the analytes were higher than the levels in urine of people whose drinking water originated from deep underground wells. The linear correlation coefficients for the relationships between total VOX and chloroform levels in drinking water and in urine were r2=0.65 and 0.88, respectively. The fraction of VOX excreted with urine in unchanged form did not exceed 20%.  相似文献   

12.
Controlled laboratory chlorination of acetaldehyde (ACD) under typical drinking water conditions (pH 6.7, 7.6 and 8.8, and temperature 4 degrees C and 21 degrees C) revealed that the formation of chloral hydrate (CH), the most common halogenated acetaldehyde (HAs), increased with contact time (0-10 days). However, at increased pH and temperature, CH reached maximum levels and subsequently broke down partially to chloroform and other unidentified compounds. After 10 days contact time, a maximum of 63% (molar) of the initial ACD consumed were converted into CH or chloroform (TCM). Various surveys of drinking water systems indicated that ACD is not the only precursor of CH. A suite of aldehydes (including ACD), and chlorinated disinfection by-products (including TCM and CH) were found in most distribution systems. The levels of bromide in source water impacted speciation of HAs. In addition to CH, brominated and other mixed (Cl/Br) acetaldehydes were detected in most samples; the speciation of HAs and THMs followed comparable trends. Similar to chloroform for trihalomethanes, CH contributed from as low as 5% to up to 60% of the total HAs. The bromine incorporation factors (BIF) in THMs and HAs were shown to increase with increasing bromide ion concentrations in the source water. Brominated THMs are more readily formed than their HA analogues; in fact, BIF values for THMs were 2-3 times higher than for the HAs. It was found that HAs may be as high as THMs in some drinking waters. As a result, the determination of the other target HAs, in addition to CH, is necessary for a better assessment of the pool of disinfection by-products in drinking water.  相似文献   

13.
Background, aim and scope

After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation.

Materials and methods

Drinking water samples were collected from different sampling points in the water treatment plant (WTP) from Gilau and the corresponding distribution system in Cluj-Napoca and also from Beclean, Dej and Jibou WTPs. The water samples were collected once a month from July 2006 to November 2007 and stored in 40-mL vials closed with Teflon lined screw caps. Water samples were preserved at 4°C until analysis after sodium thiosulfate (Na2S2O3) had been added to quench residual chlorine. All samples were analysed for THMs using headspace GC-ECD between 1 and 7 days after sampling. The sample (10 mL) was filled into 20-mL headspace vials and closed with a Teflon-lined screw cap. Thereafter, the samples were equilibrated in an oven at 60°C for 45 min. The headspace (1 mL) was then injected into the GC (Cyanopropylphenyl Polysiloxane column, 30 m × 53 mm, 3 μm film thickness, Thermo Finnigan, USA). The MDLs for THMs were determined from the standard deviation of eight standards at 1 μg/L. The MDLs for CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 0.3, 0.2, 0.3 and 0.6 μg/L, respectively. All kinetic laboratory studies were carried out only with water from the WTP Gilau. The experiments were conducted under two conditions: baseline conditions (pH 7, 21°C, 2.5 mg/L Cl2) to gain information about the change of the organic matter in the raw water and seasonally variable conditions to simulate the actual process at the treatment plant and the distribution system.

Results and discussion

This study shows that the current chlorination practice in the investigated plants complies with the THM drinking water standards of the EU. The THM concentrations in all samples taken in the four treatment plants and distributions systems were below the EU drinking water standard for TTHMs of 100 μg/L. Due to the low bromide levels in the raw waters, the main THM formed in the investigated plants is chloroform. It could also be seen that the THM levels were typically lower in water supplies with groundwater as their water resource. In one plant (Dej) with a pre-ozonation step, a significantly lower (50%) THM formation during post-chlorination was observed. Laboratory chlorination experiments revealed a good correlation between chloroform formation and the consumed chlorine dose. Also, these experiments allowed a semi-quantative prediction of the chloroform formation in the distribution system of Cluj-Napoca.

Conclusions

CHCl3 was the most important trihalomethane species observed after the chlorination of water in all of the sampled months. However, TTHM concentrations did not exceed the maximum permissible value of 100 μg/L (EU). The THM formation rates in the distribution system of Cluj-Napoca have a high seasonal variability. Kinetic laboratory experiments could be used to predict chloroform formation in the Cluj-Napoca distribution system. Furthermore, an empirical model allowed an estimation of the chloroform formation in the Gilau water treatment plant.

  相似文献   

14.
Disinfection by-products in Finnish drinking waters   总被引:11,自引:0,他引:11  
Disinfection by-products (DBPs) were measured in plant effluents of 35 Finnish waterworks, which utilized different treatment processes and raw water sources. DBPs were measured also from the distribution systems of three waterworks. Di- and trichloroacetic acids, and chloroform were the major DBPs found in treated water samples. The concentration of six haloacetic acids (HAA6) exceeded the concentrations of trihalomethanes (THMs). Chlorinated drinking waters (DWs) originating from surface waters contained the highest concentration of HAA6 and THMs: 108 and 26 microg/l, respectively. The lowest concentrations of DBPs were measured from ozonated and/or activated carbon filtrated and chloraminated DWs. Higher concentrations of HAA6, THMs, and adsorbable organic halogens were measured in summer compared to winter. The levels of chlorinated acetic acids, chloroform, and bromodichloromethane correlated positively with mutagenicity. Past mutagenicity levels of DWs were examined. A major reduction in the use of prechlorination, increased use of chloramine disinfection, and better removal of organic carbon were the most important reasons for the 69% decrease in mutagenicity from 1985 to 1994.  相似文献   

15.

Background, aim and scope  

After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation.  相似文献   

16.
Dong B  Sang WL  Jiang X  Zhou JM  Kong FX  Hu W  Wang LS 《Chemosphere》2002,46(1):87-92
We have found that rice bran effectively adsorbed chloroform from tap water. The amount of chloroform adsorbed was plotted against the equilibrium concentration of chloroform in solution on a logarithmic scale. A linear relationship was obtained, indicating that the adsorption reaction was a Freundlich type. The removal of chloroform by rice bran was attributed to the uptake into intracellular particles called spherosomes.  相似文献   

17.
Chloroform in the environment: occurrence,sources, sinks and effects   总被引:4,自引:0,他引:4  
McCulloch A 《Chemosphere》2003,50(10):1291-1308
The chloroform flux through the environment is apparently constant at some 660±220 Gg yr−1 (±1σ) and about 90% of the emissions are natural in origin: the largest single source being in offshore sea water (contributing 360±90 Gg yr−1), with soil processes the next most important (220±100 Gg yr−1). Other natural sources, mainly volcanic and geological, account for less than 20 Gg yr−1. The non-natural sources total 66±23 Gg yr−1 and are much better characterised than the natural sources. They are predominantly the result of using strong oxidising agent on organic material in the presence of chloride ion, a direct parallel with the natural processes occurring in soils.

Chloroform partitions preferentially into the atmosphere; the equilibrium distribution is greater than 99% and the average global atmospheric concentration has been calculated to be 18.5 pmol mol−1. Atmospheric oxidation, the principal removal process, is approximately in balance with the identified source fluxes. Chloroform is widely dispersed in the aquatic environment (even naturally present in some mineral waters). Consequently, it is also widely dispersed in the tissue of living creatures and in foodstuffs but there is little evidence of bioaccumulation and the quantities in foodstuffs and drinking water are not problematical for human ingestion at the highest concentrations found. Definitive studies have shown that current environmental concentrations of chloroform do not present an ecotoxicological risk, even to fish at the embryonic and larval stages when they are most susceptible.

By virtue of the very small amounts that actually become transported to the stratosphere, chloroform does not deplete ozone materially, nor is it a photochemically active volatile organic compound (VOC). It has a global warming potential that is less than that of the photochemically active VOCs and is not classed as a greenhouse gas.  相似文献   


18.
Over the past decade, there has been much publicity surrounding the impact of Methyl tert -butyl ether (MTBE) on drinking water supplies in the United States. In California, the presence of MTBE in groundwater and drinking water has led to a ban on the future use of MTBE in gasoline. Other states, such as those in the northeast, are also seeking ways to reduce or eliminate the use of MTBE due to perceived threats to the environment and public health. Despite claims about the incidence of MTBE in drinking water, no comprehensive characterization has been conducted on the available drinking water monitoring data. This paper provides a detailed analysis of the MTBE drinking water data compiled by the California Department of Health Services (CDHS) from 1995 to 2000. We find that MTBE was detected in about 1.3% of all drinking water samples, 2.5% of drinking water sources, and 3.7% of drinking water systems in California over this 6-year period. Our analysis reveals that many drinking water sources are not sampled routinely for MTBE, and in those sources that appear to be affected by MTBE, the compound is not consistently detected. The majority of MTBE detections are also concentrated in several geographic areas, which contain about 9-21% of the total California population. Average detected MTBE concentrations have decreased significantly since 1995 and 1996, ranging from 5 to 15 ppb over the last 3 years depending on the outcome of interest. Of the samples in which MTBE was present above the analytical detection limit, the concentrations in approximately 73% of drinking water samples and 86% of drinking water sources and systems were below the State's primary health-based standard of 13 ppb. Our findings suggest that, although some drinking water supplies in California have been affected by MTBE, the majority of drinking water sources and systems either have not been affected at all or contain MTBE at concentrations below levels that are likely to be of health concern.  相似文献   

19.
Over the past decade, there has been much publicity surrounding the impact of Methyl tert -butyl ether (MTBE) on drinking water supplies in the United States. In California, the presence of MTBE in groundwater and drinking water has led to a ban on the future use of MTBE in gasoline. Other states, such as those in the northeast, are also seeking ways to reduce or eliminate the use of MTBE due to perceived threats to the environment and public health. Despite claims about the incidence of MTBE in drinking water, no comprehensive characterization has been conducted on the available drinking water monitoring data. This paper provides a detailed analysis of the MTBE drinking water data compiled by the California Department of Health Services (CDHS) from 1995 to 2000. We find that MTBE was detected in about 1.3% of all drinking water samples, 2.5% of drinking water sources, and 3.7% of drinking water systems in California over this 6-year period. Our analysis reveals that many drinking water sources are not sampled routinely for MTBE, and in those sources that appear to be affected by MTBE, the compound is not consistently detected. The majority of MTBE detections are also concentrated in several geographic areas, which contain about 9–21% of the total California population. Average detected MTBE concentrations have decreased significantly since 1995 and 1996, ranging from 5 to 15 ppb over the last 3 years depending on the outcome of interest. Of the samples in which MTBE was present above the analytical detection limit, the concentrations in approximately 73% of drinking water samples and 86% of drinking water sources and systems were below the State's primary health-based standard of 13 ppb. Our findings suggest that, although some drinking water supplies in California have been affected by MTBE, the majority of drinking water sources and systems either have not been affected at all or contain MTBE at concentrations below levels that are likely to be of health concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号