首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
基于实验对4个不同形状的20L容器内的油气爆燃过程进行了研究,探讨了不同形状受限空间内爆炸压力荷载的变化和火焰行为的区别。结果表明:管道(短管和长管)的压力时序曲线较容积式受限空间(球形容器和立方体容器)的压力时序曲线更复杂,并且出现压力振荡;随着初始浓度的增加,超压值和平均升压速率均先增大后减小,在浓度为1.74%时达到最大值,此时,超压从大到小依次为:长管>短管>立方体>球形容器,平均升压速率从大到小依次为:短管>立方体>长管>球形容器;在爆燃初期,立方体中火焰行为为半球状层流火焰→扁平层流火焰,火焰速度先增大后减小,最大速度为12.5 m/s,长管中火焰行为为半球状层流火焰→拉伸指状火焰,火焰速度一直增大,最大速度为40 m/s。  相似文献   

2.
为探究刚/柔性障碍物对甲烷/空气泄爆行为的影响,采用自主搭建的连接容器(20 L球形容器连接4 m长爆炸管道和0.5 m长泄压管道)试验系统,研究不同阻塞比与厚度的刚性/柔性障碍物对甲烷/空气爆炸超压及泄爆火焰的影响。结果表明,在球形容器内,随阻塞比和厚度增加,峰值超压与最大升压速率相应增大,在阻塞率为80%和厚度为0.40 mm时峰值超压分别达到了190.4 kPa和273.5 kPa,最大升压速率分别为4.32 MPa/s和7.32 MPa/s。在管道末端,随柔性障碍物厚度增加,爆炸超压与升压速率同样大幅度提升。而随刚性障碍物阻塞比增加,峰值超压和最大升压速率先上升后下降。在设置刚性和柔性障碍物后,泄爆管道内均出现二次爆炸的现象,不同的是,二次爆炸的剧烈程度随柔性障碍物厚度增加而上升,而随刚性障碍物阻塞比增加呈现先增加后降低的趋势。  相似文献   

3.
采用k-ε湍流模型和漩涡耗散概念模型(EDC)建立了泄爆管泄放气体爆炸的模型,并模拟容器内置障碍物时泄爆管泄放气体爆炸火焰的传播过程,分析了障碍物形状、阻塞率、位置、个数对超压(pred)和压力上升速率的影响.结果表明:障碍物的出现导致燃烧速度和pred上升,正方形障碍物导致的爆炸后果最严重;增加障碍物个数或增大障碍物阻塞率均可增加超压和燃烧速度;障碍物置于容器中心,爆炸后果较强,而靠近点火源或泄爆口,后果有所减弱.  相似文献   

4.
为研究新型网状高分子材料对油气爆炸的抑制作用,搭建了狭长受限空间油气爆炸抑制实验系统,进行了油气爆炸抑制实验,通过对比是否按留空率规范填充抑爆材料所达到的3种工况,分析了爆炸超压值、升压速率、火焰强度和火焰持续时间等特性参数变化情况。实验结果表明:新型网状高分子材料对油气爆炸产生的最大爆炸超压值、升压速率和火焰强度有明显的抑制作用;新型网状高分子材料对火焰的传播有明显的阻滞作用,使火焰传播速度减小;当新型材料按照规范填充时,最大爆炸超压值和升压速率分别下降了84.36%和 39.18%以上,火焰被完全熄灭,并且距离点火端越远,抑爆效果越明显。  相似文献   

5.
为研究不同长度分支管道对油气爆炸强度的影响,搭建不同分支管道试验系统。分别在直管道中和带有分支管道的直管道中进行油气体积分数为1.75%的爆炸试验,并分析爆炸超压值、升压速率、火焰传播速度以及火焰强度等特性参数变化情况。试验结果表明,分支管道对直管内的爆炸超压、升压速率、火焰传播速度、火焰强度和火焰持续时间有强化作用,并且分支管道越长,强化作用越显著,但是较短的分支管道由于面积突扩导致的泄压效应和管壁耗散效应占主导地位,使得分支管道后火焰传播速度下降。  相似文献   

6.
许宁  杨锦  成俊平  杨健  郝永梅 《安全》2023,(3):36-42
为掌握不同因素和不同条件对H2/空气管道预混气体火焰传播的作用和影响,应用FLACS软件在不同的当量比、燃料中的CO2体积分数、障碍物数量和阻塞率等条件下,分别以火焰传播速度、超压、升压速率和温度等特征参数为表征,对半开口管道中H2/空气预混火焰传播过程及其参数影响进行模拟研究。结果表明:当量比为1.2时,半开口管道中H2/空气预混火焰最高温度最大,当量比为1时,H2/空气爆炸压力的最大超压和最大升压速率最大;CO2对H2/空气预混火焰的传播具有明显的抑制作用,且随着燃料中CO2体积分数的增加,抑制效果越突出,预混火焰最高温度、最大超压和最大升压速率也就越小;障碍物的存在对预混火焰的传播具有激励作用,且激励效果在一定程度内随着障碍物数量和阻塞率的增大而增大。  相似文献   

7.
为了研究油气浓度对半开口管道爆炸超压特性与火焰行为的影响,建立半开口透明管道实验台架,采用5种不同初始油气浓度,进行了一系列油气爆炸对比实验。研究结果表明:油气浓度对油气爆炸超压峰值以及升压速率有显著影响,二者都呈现随浓度的增加先增大后减小的变化规律;油气浓度对火焰锋面传播速度有着显著影响,在当量浓度比下,火焰锋面的传播速度最大,并且火焰锋面的传播距离也最远;管道内的火焰行为可以分为4个阶段;油气浓度对火焰传播形态以及传播速度有明显的影响,对火焰传播形态的影响主要体现在破坏变形以及管道外爆炸阶段,随着浓度增加,爆炸半径先增大后减小,火焰传播速度呈现相同的变化规律。  相似文献   

8.
为研究狭长管道油气爆炸流场分布特征规律,搭建了狭长管道油气爆炸实验系统 ,并在狭长密闭管道中进行了油气爆炸实验。通过采集爆炸超压值和火焰强度值并进行 分析,得到以下结论:随着初始油气体积分数的增大,管道沿线最大爆炸超压值和升压 速率均呈现先增大后减小的趋势,在1.75%时达到最大,并且初始油气体积分数越接近 1.75%,升压速率增大越快;根据管道沿线最大超压分布规律可将初始油气体积分数分 为1.25%~1.55%、1.55%~2.20%、2.20%~2.65%3个部分;管道末端出现二次爆炸现象,爆 炸超压变化曲线可分为点火延迟、一次爆炸、二次爆炸、振荡衰减4个阶段;火焰持续 时间随油气体积分数的增加先下降后上升,油气体积分数为1.75%时火焰持续时间最短 。  相似文献   

9.
建立球形容器与管道、2个球形容器与管道组成的2种形式的连通容器试验装置,研究初始压力对连通容器甲烷-空气混合物泄爆压力的影响。结果表明:连通容器内泄爆超压随初始压力增加而增大,并与初始压力近似成线性关系;对于2个球形容器与管道组成的连通容器,起爆容器的泄爆超压始终小于传爆容器;泄爆方式和点火方式对连通容器泄爆超压有较大影响,大容器点火时,2个容器的泄爆压力差随初始压力增加而增大,但小容器点火时,2个容器的泄爆压力差随初始压力的增加变化较小;初始压力对不同结构和尺寸的连通容器的泄爆压力的影响不同,当令初始压力对大容器点火时,小容器内泄爆压力受影响最大,而当对单球形容器与管道组成的连通容器的小容器点火时,小容器内泄爆压力受影响最小。  相似文献   

10.
为探究2种初始条件对天然气爆炸压力的影响特性,搭建球形容器泄压管道试验系统,通过在球形容器和泄压管道内布置压力传感器,研究不同点火位置(距球心0、2. 7、4. 7 m)和开口率(0%、25%、60%、100%)对天然气爆炸压力特性的影响。结果表明:当点火位置位于2. 7和4. 7 m时,球形容器内的峰值压力和升压速率显著大于0 m处点火的数值;设置泄压口明显降低了球形容器内的峰值压力,而随泄压口开口率增大,球内峰值压力降低幅度较小;容器密闭时,管道末端峰值压力在0 m处点火时最大,容器设有泄压口时,管道末端峰值压力在4. 7 m处点火时最大;在0 m处点火后管道末端的最大升压速率小于在2. 7和4. 7 m处点火后的速率。  相似文献   

11.
利用自主搭建的易爆气体爆炸试验平台,研究了甲烷体积分数为8%、9%、9.5%、10%、11%的甲烷-空气混合气体的爆炸特性。结果表明:爆炸火焰在管道内经历了层流火焰传播加速、郁金香火焰传播速度变慢和湍流火焰传播速度增大3个特征阶段;爆炸管道压力表现出升压、振荡和反向冲击3个变化阶段;爆炸感应期、火焰最大传播加速度和最大爆炸升压速率等特征参数能更好地反映易爆气体的爆炸能力和爆炸强度。结合爆炸火焰图片、光电传感信号和压力传感信号发现,在一端开口的管道内,爆炸压力出现变化的时间总是先于火焰传播速度的变化时间,表明爆炸压力的变化是导致火焰传播速度变化的原因。因此,抑爆过程中,减小爆炸压力和降低升压速率是达到良好抑爆效果的关键。  相似文献   

12.
为研究含NaCl添加剂超细水雾对甲烷爆炸的影响,在自制的半封闭透明管道内,进行含NaCl添加剂超细水雾抑制甲烷爆炸试验,通过检测和分析在不同NaCl浓度情况下超细水雾的粒径和甲烷爆炸的平均火焰传播速度、爆炸超压以及平均升压速率,探究NaCl浓度对超细水雾粒径及其对抑制甲烷爆炸有效性的影响。研究结果表明:NaCl浓度对超细水雾粒径影响较小;对于体积分数为9.5%的甲烷,相比于纯甲烷爆炸,其平均火焰传播速率、最大爆炸超压以及平均升压速率分别下降了53.7%,63.4%和60.7%,相比于超细纯水雾,其平均火焰传播速率、最大爆炸超压以及平均升压速率分别下降了38.6%,58%,56%;在通雾量相同的条件下,浓度为2.5%NaCl超细水雾对体积分数为9.5%的甲烷爆炸抑制性能最佳;含NaCl添加剂超细水雾的物理化学共同作用可以有效抑爆甲烷。  相似文献   

13.
管道内可燃气体火焰传播与障碍物相互作用的过程的研究对爆炸场所预估和防爆工程设计具有重要的意义,在实际生产、生活中,火焰传播方向上的障碍物往往具有立体结构,基本没有平面结构,因此,利用长管密闭容器,在立体障碍物存在的条件下,研究了瓦斯爆炸压力和火焰传播速度。研究结果表明:随着障碍物数量的增加,瓦斯爆炸压力和火焰传播速度随之增大;阻塞率增加,瓦斯爆炸压力和火焰传播速度出现先增大后减小的现象,当阻塞率为50%时,其爆炸压力和火焰传播速度达到最大;障碍物的摆放形式对瓦斯爆炸压力和火焰传播速度也有一定的影响。  相似文献   

14.
为研究连通容器内气体爆炸规律,采用流体力学软件Fluent对球形连通容器内预混气体爆炸过程进行模拟,分析了不同管道长度和传爆方向条件下连通容器内压力和中心轴线上的速度变化。结果表明:随连接管长增加,连通容器内压力峰值更高,连通容器在压力稳定阶段保持的压力更小;较之小容器中心点火、大容器中心点火连通容器内压力迅速上升期及达到压力峰值的时间更迟,连通容器内的压力峰值更高,不同传爆方向时,传爆容器内的压力都先于起爆容器达到一个极值;火焰进入传爆容器后,轴线速度得到极大提高,最大值出现在管道内靠近传爆容器的接合处,可燃气体基本燃烧完时,连通容器轴线速度随连接管长增加下降更慢。  相似文献   

15.
柱形压力容器开口泄爆过程数值模拟研究   总被引:4,自引:1,他引:3  
为研究柱形压力容器泄爆规律,采用经典流体力学软件FLUENT对典型的柱形压力容器泄爆过程进行数值模拟,分析从泄爆口开启到泄压结束时间段压力发展、火焰传播、气体流动及可燃气体浓度变化特性。结果表明:不同泄爆压力下容器内压力发展变化呈现不同特点,在较小泄爆压力情况下会出现压力再度上升的双峰现象。泄爆过程中产生的湍流沿泄爆口附近容器壁拉长火焰面,并加快燃烧速率。同时就容器内不同点火位置对爆炸强度影响进行研究,得出在泄爆压力为0.04 MPa时,底面点火对本柱形压力容器产生的最大升压速率约为中心点火最大升压速率的1.4倍。  相似文献   

16.
基于实验研究了端部开口半受限空间内汽油蒸气泄放爆燃特性,获得了受限空间 内外爆燃超压的变化规律。研究结果表明:受限空间内部超压随时间变化分为点火孕育 期、加速泄流期、外部爆燃期、波动振荡期、衰弱恢复期,爆燃过程中出现多超压峰值 现象且伴随有强烈的压力振荡;随着初始油气浓度的增大,受限空间外部爆燃超压先增 大后减小,外部爆燃超压最大浓度为1.70%;随着比例距离的增加,受限空间外部超压 值呈负指数规律衰减,且横向衰减速率要大于轴向衰减速率。  相似文献   

17.
利用流体力学软件Fluent对球形容器泄爆过程中流场进行数值模拟,分析泄爆导管长度和泄放压力对爆炸压力和爆炸强度的影响,以及泄爆过程中火焰阵面和速度场的变化。研究表明,泄爆过程增大了燃烧火焰的面积,燃烧火焰在泄爆过程中发生湍流,燃烧速度得到极大地加速,泄爆导管对于容器内的高压气体的泄放起到了约束作用,泄爆导管的长度是影响泄爆过程中容器内部压力变化的重要因素。  相似文献   

18.
使用定容燃烧弹与高速纹影照相系统研究了不同当量比下甲烷-空气预混气体的层流火焰燃烧特性。实验数据同时应用传统线性模型和非线性模型分析了不同当量比对球形扩展火焰的传播速率和马克斯坦长度的影响。结果显示:随着当量比的增加,层流燃烧速率先增大后减小,直到当量比为1.1时,火焰速率达到最大值。马克斯坦长度始终为正值,且随着当量比的增大而增大。在所有当量比条件下,线性和非线性方法计算的火焰速率大致相同,差值小于0.01 m/s;线性方法得到的马克斯坦长度均大于非线性模型计算的结果,并随着当量比的增大,两种方法得到的马克斯坦长度的差值更加显著。  相似文献   

19.
为了解尺寸对球形容器连接管道甲烷-空气混合物爆炸的影响规律,利用Fluent软件,采用κ-ε湍流模型、涡耗散模型(简称EDC模型)、壁面热耗散、热辐射模型及SIMPLE算法,建立了球形容器连接管道内甲烷-空气混合物爆炸的数值模型,对容器与管道内甲烷-空气预混气体爆炸的尺寸效应进行了数值模拟。结果表明:随管道内径增大,球形容器内最大爆炸压力逐渐增大,管道末端最大爆炸压力变化无明显规律;而随管道长度增加,球形容器内最大爆炸压力逐渐减小;改变管道内径,较大体积球形容器内最大爆炸压力均大于较小体积球形容器内最大爆炸压力,最大爆炸压力上升速率的规律则相反,容器体积对管道末端最大爆炸压力的影响无明显规律。  相似文献   

20.
为了探究长径比对油气爆炸传播特性与火焰传播规律的影响,为复杂管道受限空间油气爆炸防控提供理论参考,结合油气爆炸与爆炸抑制工程实际需要,构建不同长径比管道油气爆炸模拟实验系统,在此基础上开展不同初始浓度的预混油气-空气混合气爆炸实验。研究结果表明:管道内部的预混油气爆炸超压信号呈先上升后下降的趋势,由于耗散以及憋压效应导致超压下降平稳后仍大于初始压力;同时长径比增加会导致达到最大爆炸超压的油气浓度增加,油气爆炸超压峰值随着长径比的增加呈现上升→下降→上升的规律,小长径比管道的油气爆炸超压峰值高于大长径比管道,但同为小长径比管道或大长径比管道工况的实验结果对比显示爆炸超压峰值随着长径比增加而提升;而超压上升速率则会随着长径比的增加而上升;长径比的增加同时也会促进火焰的加速传播并减小火焰持续时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号