首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Urban heat island effect refers to the phenomenon that ambient air and surface temperatures in urban areas are several degrees higher than surrounding rural areas. Higher temperatures not only impact the comfort of urban dwellers, but also increase energy use, ozone production, and the risk of death for humans in a heat wave. Our research focuses on the variation in land surface temperature in the Gywnns Fall Watershed, Maryland. We found that land surface temperature is highly variable spatially, resulting in "hotspots" within the heat island. We further explore how this temperature variation relates to social factors on the scale of the census-based block group. We show that land surface temperature is statistically higher in block groups that are characterized by low income, high poverty, less education, more ethnic minorities, more elderly people and greater risk of crime. These variables were mapped to evaluate the spatial relationship of land surface temperatures to social factors. This spatially explicit approach facilitates identification of specific areas to prioritize for heat prevention and intervention efforts. We demonstrate, through an exercise, how incorporating data on land surface temperature and social factors into heat intervention strategies could contribute to efficient allocation of limited resources and services. The exercise also indicates where heat prevention efforts, such as tree-planting programs, are most needed to help reduce heat exposure and moderate the urban heat island effect.  相似文献   

2.
Urban land use and land cover change significantly affect spatial and temporal patterns of runoff, which in turn impacts surface water quality. With the exponential growth in urban areas over the past three decades, changes in land use and land cover to cater for the growth of cities has been a conspicuous spectacle in urban spaces. The main goal of this study was to assess the impacts of land cover change on runoff and surface water quality using a partial area hydrology framework. The study employed ArcHydro GIS extension and a modified version of Long-Term Hydrologic and Nonpoint Source Pollution model (L-THIA-NPS) in estimating runoff and nonpoint source pollutant concentration around Lake Calumet between 1992 and 2001. Data employed include National Land Cover Data set, rainfall data, digital elevation model (DEM), Soil Survey Geographic (SSURGO) data, and The United States Environmental Protection Agency’s STORET (storage and retrieval) water quality data. The model was able to predict surface water quality reasonably well over the study period. Sensitivity analysis facilitated a manual calibration of the model. Model validation was executed by comparing simulated results following calibration and observed water quality data for the study area. The study demonstrates that the level of concentration of nonpoint source pollutants in surface water within an urban watershed heavily depends on the spatiotemporal variations in areas that contribute towards runoff compared to the spatial extent of change in major land use/land cover.  相似文献   

3.
Abstract: Impervious cover is a commonly used metric to help explain or predict anthropogenic impacts on aquatic resources; often it is used as a surrogate for intensity of human impacts when evaluating effects on aquatic resources. The most common way to estimate imperviousness is based on relationships with land use. Few studies have evaluated how the relationship between impervious surface and land use varies among geographies with different levels of development and between types of imagery used to assign land use type. In this study, we assess variability in estimates of imperviousness based on two locally available land use datasets: one based on aerial imagery (2‐m resolution) and another based on satellite imagery (30‐m resolution). The ranges and variability in imperviousness within land use categories were assessed at several spatial scales, including within counties, between counties, and between watersheds. Results indicate that there was considerable variability for all developed land use types. Estimated impervious cover often varied over a range of 20‐40% points within a land use category. Furthermore, there were clear spatial patterns both between and within counties, with impervious cover for a given land use type being higher near the urban centers and lower at the margins of development. Estimates of imperviousness for 12 study watersheds indicated that variability increased with increasing watershed development, making it difficult to confidently set management or regulatory targets based on impervious cover. This study suggests that locally derived, high resolution satellite or aerial imagery should be used to estimate imperviousness when a high level of accuracy and precision is required for regulatory or management decisions. Furthermore, the error associated with impervious land use relationships should be accounted for when using impervious cover in runoff or water quality models, or when making management decisions regarding stream health.  相似文献   

4.
Agricultural expansion and deforestation are spatial processes of land transformation that impact on landscape pattern. In peninsular Malaysia, the conversion of forested areas into two major cash crops—rubber and oil palm plantations—has been identified as driving significant environmental change. To date, there has been insufficient literature studying the link between changes in landscape patterns and land-related development policies. Therefore, this paper examines: (i) the links between development policies and changes in land use/land cover and landscape pattern and (ii) the significance and implications of these links for future development policies. The objective is to generate insights on the changing process of land use/land cover and landscape pattern as a functional response to development policies and their consequences for environmental conditions. Over the last century, the development of cash crops has changed the country from one dominated by natural landscapes to one dominated by agricultural landscapes. But the last decade of the century saw urbanization beginning to impact significantly. This process aligned with the establishment of various development policies, from land development for agriculture between the mid 1950s and the 1970s to an emphasis on manufacturing from the 1980s onward. Based on a case study in Selangor, peninsular Malaysia, a model of landscape pattern change is presented. It contains three stages according to the relative importance of rubber (first stage: 1900–1950s), oil palm (second stage: 1960s–1970s), and urban (third stage: 1980s–1990s) development that influenced landscape fragmentation and heterogeneity. The environmental consequences of this change have been depicted through loss of biodiversity, geohazard incidences, and the spread of vector-borne diseases. The spatial ecological information can be useful to development policy formulation, allowing diagnosis of the country’s “health” and sustainability. The final section outlines the usefulness of landscape analysis in the policy-making process to prevent further fragmentation of the landscape and forest loss in Malaysia in the face of rapid economic development.
Adnan A. HezriEmail:
  相似文献   

5.
Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land use are determined by analyzing the impervious surface distribution using Landsat satellite imagery. Population distribution and density are extracted from the 2000 census data. Non-point source pollution parameters used for measuring water quality are analyzed for the sub-drainage basins of Hillsborough County. The relationships between 2002 urban land use, population distribution and their environmental influences are explored using regression analysis against various non-point source pollutant loadings in these sub-drainage basins. The results suggest that strong associations existed between most pollutant loadings and the extent of impervious surface within each sub-drainage basin in 2002. Population density also exhibits apparent correlations with loading rates of several pollutants. Spatial variations of selected non-point source pollutant loadings are also assessed.  相似文献   

6.
The study investigated the response of surface water quality to urbanization in Xi'an, China. We qualitatively described the change in urban land use from 1996 to 2003, analyzed the status of the surface water environment, and constructed a model of urban expansion to simulate the water environment's response to urbanization. Our results revealed that patterns of land use changed dramatically, the rate of economic growth exceeded that of urbanization during the study period, and increasing urban land use was correlated with fluctuations in water quality. The simulated results suggested that urbanization had reached the environmental carrying capacity based on the average land utility and the marginal costs of pollution.  相似文献   

7.
ABSTRACT: Biotic indices and sediment trace element concentrations for 43 streams in northeastern Illinois (Chicago area) from the 1980s and 1990s were examined along an agricultural to urban land cover gradient to explore the relations among biotic integrity, sediment chemistry, and urbanization. The Illinois fish Alternative Index of Biotic Integrity (AIBI) ranged from poor to excellent in agricultural/rural streams, but streams with more than 10 percent watershed urban land (about 500 people/mi2) had fair or poor index scores. A macroinvertebrate index (MBI) showed similar trends. A qualitative habitat index (PIBI) did not correlate to either urban indicator. The AIBI and MBI correlated with urban associated sediment trace element concentrations. Elevated copper concentrations in sediment occurred in streams with greater than 40 percent watershed urban land. The number of intolerant fish species and modified index of biotic integrity scores increased in some rural, urbanizing, and urban streams from the 1980s to 1990s, with the largest increases occurring in rural streams with loamy/sandy surficial deposits. However, smaller increases also occurred in urban streams with clayey surficial deposits and over 50 percent watershed urban land. These data illustrate the potentially complex spatial and temporal relations among biotic integrity, sediment chemistry, watershed urban land, population density, and regional and local geologic setting.  相似文献   

8.
ABSTRACT: Significant land cover changes have occurred in the watersheds that contribute runoff to the upper San Pedro River in Sonora, Mexico, and southeast Arizona. These changes, observed using a series of remotely sensed images taken in the 1970s, 1980s, and 1990s, have been implicated in the alteration of the basin hydrologic response. The Cannonsville subwatershed, located in the Catskill/Delaware watershed complex that delivers water to New York City, provides a contrast in land cover change. In this region, the Cannonsville watershed condition has improved over a comparable time period. A landscape assessment tool using a geographic information system (GIS) has been developed that automates the parameterization of the Soil and Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS) hydrologic models. The Automated Geospatial Watershed Assessment (AGWA) tool was used to prepare parameter input files for the Upper San Pedro Basin, a subwatershed within the San Pedro undergoing significant changes, and the Cannonsville watershed using historical land cover data. Runoff and sediment yield were simulated using these models. In the Cannonsville watershed, land cover change had a beneficial impact on modeled watershed response due to the transition from agriculture to forest land cover. Simulation results for the San Pedro indicate that increasing urban and agricultural areas and the simultaneous invasion of woody plants and decline of grasslands resulted in increased annual and event runoff volumes, flashier flood response, and decreased water quality due to sediment loading. These results demonstrate the usefulness of integrating remote sensing and distributed hydrologic models through the use of GIS for assessing watershed condition and the relative impacts of land cover transitions on hydrologic response.  相似文献   

9.
Land abandonment is an important cause of changes in landscape patterns in the Mediterranean area. There is a need to monitor land use and land cover changes in order to provide quantitative evidence of the relationship between land abandonment and the formation of new landscape patterns. Appropriate management policies to encourage sustainable development can then be developed. This paper describes how to monitor landscape dynamics using different temporal land use and land cover data generated from field survey and airborne information. The results showed that the abandonment of agricultural land generally results in an increase of vegetation biomass. This process leads to homogenization of the landscape. In addition, abandonment promotes fragmentation of agricultural land. Based on these results, the paper discusses the implications for rural management policies concerning the abandonment of agricultural land and suggests recommendations for the development of such policies.  相似文献   

10.
Lakes,Wetlands, and Streams as Predictors of Land Use/Cover Distribution   总被引:2,自引:0,他引:2  
The importance of the surrounding landscape to aquatic ecosystems has been well established. Most research linking aquatic ecosystems to landscapes has focused on the one-way effect of land on water. However, to understand fully the complex interactions between aquatic and terrestrial ecosystems, aquatic ecosystems must be seen not only as receptors of human modification of the landscape, but also as potential drivers of these modifications. We hypothesized that the presence of aquatic ecosystems influences the spatial distribution of human land use/cover of the nearby landscape (≤1 km) and that this influence has changed through time from the 1930s to the 1990s. To test this hypothesis, we compared the distribution of residential, agricultural, and forested land use/cover around aquatic ecosystems (lakes, wetlands, and streams) to the overall regional land use/cover proportion in an area in southeast Michigan, USA; we also compared the distribution of land use/cover around county roads/highway and towns (known determinants of many land use/cover patterns) to the regional proportion. We found that lakes, wetlands, and streams were strongly associated with the distribution of land use/cover, that each ecosystem type showed different patterns, and that the magnitude of the association was at least as strong as the association with human features. We also found that the area closest to aquatic ecosystems (<500 m) was more strongly associated with land use/cover distribution than areas further away. Finally, we found that the strength of the association between aquatic ecosystems and land use/cover increased from 1938 to 1995, although the overall patterns were similar through time. Our results show that a more complete understanding is needed of the role of aquatic ecosystems on the distribution of land use/cover.  相似文献   

11.
随着城市人口的急剧增加,城市建筑规模迅速膨胀,大量热源集中排放,产生了城市内部温度明显高于郊区的特殊城市气候现象,即“热岛效应”.以安徽省芜湖市为研究区域,采用GIS叠加分析方法、缓冲区分析方法进行地表辐射亮温与土地覆盖类型的相关性研究.研究结果表明,辐射亮温与地表类型有明显的相关关系,建筑与辐射亮温的相关系数为0.87,植被、水体与辐射亮温的相关系数分别为0.59、0.78.人工建筑因素是产生热岛效应的主要原因之一,加大植被、水体在城市土地用地中的比重,是控制城市热岛效应行之有效的方法,而且利用辐射亮温图可很好地指示城市土地覆盖类型在时间上和空间上的变化.  相似文献   

12.
The conversion of natural habitat to urban settlements is a primary driver of biodiversity loss, and species' persistence is threatened by the extent, location, and spatial pattern of development. Urban growth models are widely used to anticipate future development and to inform conservation management, but the source of spatial input to these models may contribute to uncertainty in their predictions. We compared two sources of historic urban maps, used as input for model calibration, to determine how differences in definition and scale of urban extent affect the resulting spatial predictions from a widely used urban growth model for San Diego County, CA under three conservation scenarios. The results showed that rate, extent, and spatial pattern of predicted urban development, and associated habitat loss, may vary substantially depending on the source of input data, regardless of how much land is excluded from development. Although the datasets we compared both represented urban land, different types of land use/land cover included in the definition of urban land and different minimum mapping units contributed to the discrepancies. Varying temporal resolution of the input datasets also contributed to differences in projected rates of development. Differential predicted impacts to vegetation types illustrate how the choice of spatial input data may lead to different conclusions relative to conservation. Although the study cannot reveal whether one dataset is better than another, modelers should carefully consider that geographical reality can be represented differently, and should carefully choose the definition and scale of their data to fit their research objectives.  相似文献   

13.
ABSTRACT: This paper demonstrates how satellite image data [e.g., from Landsat 5 Thematic Mapper (TM)], in conjunction with an urban growth model and simple runoff calculations, can be used to estimate future surface runoff and, by implication, water quality within a watershed. To illustrate the method, predictions of land use change and surface runoff are shown for Spring Creek Watershed, a medium sized urbanizing watershed in Central Pennsylvania. Land cover classifications for this watershed were created from images for summertime 1986 and 1996 and subsequently used as input to the Clarke urban growth model, called SLEUTH, to predict land use changes to the year 2025. Simulations with this model show a progressive growth in the percentage of urban pixels and in impervious surface area in the watershed but also an increase in woodland, primarily in previously clear‐cut areas. Given that woodland area will continue to increase in area, surface runoff into Spring Creek is predicted to remain only slightly above present level. However, should the woodland amount fail to increase, surface runoff is then predicted to increase more significantly during the next 25 years. Finally, the concept of urban sprawl is addressed within the context of predicted increases in urbanization by relating the implied increase in impervious surface area to population density within the watershed.  相似文献   

14.
In this article we compared the response of surface water runoff to a storm event for different rates of urbanization, reforestation and riparian buffer setbacks across forty subwatersheds of the Muskegon River Watershed located in Michigan, USA. We also made these comparisons for several forecasted and one historical land use scenarios (over 140 years). Future land use scenarios to 2040 for forest regrowth, urbanization rates and stream setbacks were developed using the Land Transformation Model (LTM). Historical land use information, from 1900 at 5-year time step intervals, was created using a Backcast land use change model configured using artificial neural network and driven by agriculture and housing census information. We show that (1) controlling the rate of development is the most effective policy option to reduce runoff; (2) establishing setbacks along the mainstem are not as effective as controlling urban growth; (3) reforestation can abate some of the runoff effects from urban growth but not all; (4) land use patterns of the 1970s produced the least amount of runoff in most cases in the Muskegon River Watershed when compared to land use maps from 1900 to 2040; and, (5) future land use patterns here not always lead to increased (worse) runoff than the past. We found that while ten of the subwatersheds contained futures that were worse than any past land use configuration, twenty-five (62.5%) of the subwatersheds produced the greatest amount of runoff in 1900, shortly after the entire watershed was clear-cut. One third (14/40) of the subwatersheds contained the minimum amount of runoff in the 1960s and 1970s, a period when forest amounts were greatest and urban amounts relatively small.  相似文献   

15.
Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus].  相似文献   

16.
Urban ecosystems are often sources of nonpoint source (NPS) nitrogen (N) pollution to aquatic ecosystems. However, N export from urban watersheds is highly variable. Examples of densely urbanized watersheds are not well studied, and these may have comparatively low export rates. Commonly used metrics of landscape heterogeneity may obscure our ability to discern relationships among landscape characteristics that can explain these lower export rates. We expected that differences not often captured by these metrics in the relative cover of vegetation, structures, and impervious surfaces would better explain observed variation in N export. We examined these relationships during storms in residential watersheds. Contrary to expectations, land cover did not directly predict variation in N or water export. Instead, N export was strongly linked to drainage infrastructure density. Our research highlights the role of fine‐scaled landscape attributes, mainly infrastructure, in explaining patterns of N export from densely urbanized watersheds. Changes to hydrologic flow paths by infrastructure explained more variation in N export than land cover. Our findings support further development of landscape ecological models of urban N export that focus on hydrologic modification by infrastructure rather than traditional landscape measures such as land use, as indicators for evaluating patterns of NPS nitrogen pollution in densely urbanized watersheds.  相似文献   

17.
Satellite images have been used extensively to study temporal changes in land use and land cover (LULC) in China. However, few studies have been conducted in the karst areas despite the large area and population involved and the fragile ecosystem. In this study, LULC changes were examined in part of Guizhou Province of southern China from 1991 to 2001 based on Landsat Thematic Mapper (TM) images of November 7, 1991, December 5, 1994, and December 19, 2001. Land surface temperature (LST) and normalized difference vegetation index (NDVI) were computed based on LULC types. The results show that agricultural land decreased, while urban areas expanded dramatically, and forest land increased slightly. Barren land increased from 1991 to 1994, and then decreased from 1994 to 2001. These changes in LULC widened the temperature difference between the urban and the rural areas. The change in LST was mainly associated with changes in construction materials in the urban area and in vegetation abundance both in the urban and rural areas. Vegetation had a dual function in the temperatures of different LULC types. While it could ease the warming trend in the urban or built-up areas, it helped to keep other lands warmer in the cold weather. The study also reveals that due to the government's efforts on reforestation, rural ecosystems in some of the study area were being restored. The time required for the karst ecosystem to recover was shorter than previously thought.  相似文献   

18.
ABSTRACT: Geographic Information Systems (GIS) were used to assess the relationships between land use patterns and the physical habitat and macroinvertebrate fauna of streams within similar sized watersheds. Eleven second or third order watersheds ranging from highly urbanized to heavily forested were selected along Lake Superior's North Shore. Land use patterns within the watersheds were quantified using readily available digital land use/land cover information, with a minimum mapping resolution of 16 ha. Physical habitat features, describing substrate characteristics and stream morphology, were characterized at sample points within each stream. Principle component and correlation analyses were used to identify relationships between macroinvertebrates and stream physical habitat, and between habitat and land use patterns. Substrate characteristics and presence of coarse woody debris were found to have the strongest correlations with macreinvertebrate assemblage richness and composition. Agricultural and urban land use was correlated with substrate characteristics. Algal abundance, associated with macroinvertebrate compositional differences, was correlated with housing density and non-forest land covers. The use of readily available spatial data, even at this relatively coarse scale, provides a means to detect the primary relationships between land use and stream habitat quality; finer-resolution GIS databases are needed to assess more subtle influences, such as those due to riparian conditions.  相似文献   

19.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

20.
Intensified surface mining, power generation, and smelting operations in the Hunter River lowlands, NSW, Australia have posed numerous new environmental management problems. Legislative controls over water, soils, and land use management have been clearly insufficient and remain so. The complex range of environmental changes is challenging government agencies as well as coal developers. While water demands are increasing in the region the proportionally greatest competitors are power generation and irrigation. Comprehensive regional water quality assessment is inadequate and divided between a number of agencies with fragmentary interests. Coal development inquiries signal further controversy over appropriate management solutions and are an ongoing phenomenon in the region. The early 1980s resource boom has been followed by lower rates of economic growth, which have resulted in disparate agency responses to major ongoing environmental questions. While issue attention cycles are often remarkably short in environmental management, matters of water, land, and air quality require intensive and ongoing monitoring and policy development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号