首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对目前瓦斯治理方法的对比,结合煤层瓦斯赋存与流动理论、回采工作面矿山压力规律及采场覆岩移动规律、采空区“O”型圈等理论,提出利用地面L型钻孔抽采煤层顶板裂隙带瓦斯的方法,用于缓解低位采空区抽采巷抽采负担,消除安全隐患。实践表明:地面L型钻孔使低位采空区抽采巷平均浓度由4.43%降低到3.37%,降低了24%,治理效果明显,该方法能为大采高综放工作面瓦斯治理工作提供新的思路。  相似文献   

2.
为解决低瓦斯含量煤层在超高强度开采工艺下,U型通风回采面割煤期间瓦斯涌出量突增、采空区持续高瓦斯涌出以及上隅角瓦斯频繁超限等问题,在确认瓦斯异常涌出原因基础上,以塔山煤矿为例,研究煤层注水抑制落煤瓦斯涌出和专用巷分期排抽采空区瓦斯联合防治技术。结果表明,煤层注水消除了割煤期间瓦斯突增现象——回风流中最大瓦斯体积分数仅0.58%;在开采初期瓦斯专用巷自然引排使回采面形成U+I型通风方式,分担风排瓦斯量约30 m~3/min,在开采中、后期的密闭负压抽采,瓦斯排放量提升至40 m~3/min。采用该技术,已将回采期间的工作面瓦斯体积分数有效控制在0.6%以下,实现安全高效开采。  相似文献   

3.
针对深井高瓦斯低透气性突出煤层群消突和首采层开采卸压瓦斯治理难题,以谢桥煤矿11426工作面开采为例,设计首采中间层无煤柱开采、实现上下突出煤层均消突的技术方案,研究了Y型通风工作面采空区瓦斯及风压分布规律,结合煤层群开采巷道布置条件,提出并实施留巷侧井下暗立眼回风阶段留巷Y型通风技术,强化留巷墙体封闭和留巷采空侧回风立眼封闭等卸压瓦斯抽采技术,实现了深井煤层群首采层工作面的安全高效回采和邻近突出煤层的全面消突。11426工作面回采期间,绝对瓦斯涌出量最大47.67 m3/min,工作面瓦斯抽采率高达65%以上,研究成果为今后类似深井煤层群开采的卸压瓦斯抽采和治理提供技术指导。  相似文献   

4.
为解决下邻近煤层群卸压瓦斯造成工作面上隅角超限严重以及支架间和采空区底部瓦斯不能及时被抽离等问题,基于近距离下邻近高瓦斯煤层群采动卸压瓦斯涌出规律,提出内错式迎向斜切钻孔辅助顶板高抽巷抽采采空区瓦斯技术。利用顶板垮落与钻孔形态演变规律,实现钻孔依次辅抽上隅角、支架间和采空区底部等富集区瓦斯,并在高家庄煤矿2号煤层2203回采工作面试验考察。结果表明:与高抽巷单一抽采效果相比,内错式迎向斜切钻孔辅助抽采条件下的叠加抽采平均瓦斯体积分数达15. 1%、提升1. 3倍,平均抽采纯量达18. 61 m3/min、提升1. 9倍,叠加抽采率达50%,抽采量占邻近层和采空区瓦斯涌出总量的83%,回风流和上隅角瓦斯体积分数控制在0. 6%以下,可有效保障工作面的顺利回采。  相似文献   

5.
张集矿属于煤与瓦斯突出矿井,针对目前所开采的17266工作面地质构造条件复杂、瓦斯涌出量大、处于突出危险区等瓦斯治理难题,采取"风排瓦斯、高抽巷穿层钻孔抽采、运输巷、回风巷顺层钻孔抽采和上隅角埋管抽采"等瓦斯综合治理措施,用分源预测法得出工作面绝对瓦斯涌出量为30.3 m3/min。结果表明,工作面的主要瓦斯涌出来源为本煤层瓦斯涌出。工作面风排瓦斯量11.0 m3/min,工作面瓦斯抽采率达63.0%以上。  相似文献   

6.
为了探究布尔台煤矿回采工作面瓦斯涌出主控因素及其治理措施,以42201回采工作面为例,采用单元法现场实测了工作面瓦斯涌出情况,并分析了其受开采强度、风量、煤层瓦斯含量、工作面来压变化、气候条件等相关参数的影响规律。研究结果表明:布尔台煤矿42201回采工作面的主要瓦斯涌出来源为煤壁和落煤瓦斯涌出;矿山压力显现和来压时,工作面绝对瓦斯涌出量有较为明显的异常变化;开采强度的变化趋势和上隅角瓦斯浓度异常变化的趋势是一致的;对比发现,地面大气压力对工作面瓦斯涌出的影响程度远小于开采强度。针对布尔台煤矿的特点,提出了“顶板定向长钻孔分段水力压裂强制放顶和联巷插管或煤柱大直径钻孔桥接采空区的瓦斯抽采相结合”的瓦斯治理措施。现场应用发现:42201工作面最高来压强度由59.1 MPa降低至48.0 MPa,上隅角瓦斯抽采量为2.70~3.79 m3/min,平均为3.25 m3/min,占总的瓦斯涌出量的比例为62.65%~69.16%。  相似文献   

7.
高抽巷现已被广泛用于治理工作面采动裂隙带及采空区瓦斯,而现场实际实施存在一定经验性,影响了高抽巷的瓦斯治理效果。针对现场高抽巷抽采流量低、工作面瓦斯易超限等问题,为提高高抽巷的瓦斯抽采效果,以余吾煤业为例,通过理论计算、现场考察、数值模拟、抽采效果分析,系统地研究了综放面高抽巷抽采瓦斯的布置层位。研究结果表明:综放面顶板冒落带高度约为18 m,裂隙带高度约为40 m,同时结合现场抽采效果分析,高抽巷宜布置在距煤层顶板40 m,与回风顺槽平距30 m处。研究结论对于综放面高抽巷的合理布置、提高瓦斯抽采效果具有一定的借鉴意义。  相似文献   

8.
为了解决高瓦斯特厚煤层综放工作面瓦斯超限问题,分析了工作面瓦斯源的构成,以彬长矿区某矿综放工作面为研究对象,提出了本煤层采用顺层平行孔与扇形钻孔相结合的方法抽采瓦斯,沿煤层顶板与回风顺槽水平内错掘进瓦斯专用抽放巷,上隅角采用埋管抽采及均压通风技术,与瓦斯专用抽放巷协同治理上隅角和采空区瓦斯,风障导流稀释法等一系列技术措施。现场应用表明,工作面上隅角瓦斯体积分数由0.68%降低至0.2%以下,回风巷口瓦斯体积分数由0.7%降低至0.4%,风排瓦斯量由20 m~3/min降低至5 m~3/min以下,瓦斯抽采率保持在85%以上,最大值达到95%左右。表明此套瓦斯综合治理技术应用到高瓦斯特厚煤层综采放顶煤工作面瓦斯治理中是切实可行的。  相似文献   

9.
为了揭示高强度开采低瓦斯煤层而导致的高瓦斯矿井的瓦斯涌出和瓦斯防治特点,以王家岭矿为例,采用现场跟踪考察和测试的方法,分析了回采工作面瓦斯涌出特征,提出了适用该矿的瓦斯治理措施,并对瓦斯治理效果进行了评价。针对该矿低瓦斯煤层高强度开采的特点,提出了"以顶板高位定向钻孔和上隅角埋管抽采卸压瓦斯相结合"的瓦斯治理模式,瓦斯治理效果的现场考察发现:顶板高位定向钻孔平均抽采纯量为1.33 m~3/min,最大为2.82 m~3/min,上隅角平均瓦斯抽采纯量为0.91 m~3/min,最大为1.30 m~3/min。  相似文献   

10.
以李雅庄煤矿采空区瓦斯治理效果为研究目的,对2#煤层224、601、603工作面分别采用了瓦斯尾巷、高位钻场、高位抽放巷三种方法进行实测与分析,通过现场实践对抽采参数以及施工、管理进行分析。结果表明:通过抽采参数的对比分析,从抽采浓度平均值上,高抽巷为24.5%,明显高于高位钻场的15%,瓦斯尾巷为6.3%;从抽采纯流量平均值上,高抽巷为2.03m~3/min,高于高位钻场的1.95 m~3/min,瓦斯尾巷的1.66 m~3/min;从抽采率平均值上,高抽巷为57.2%,高位钻场为45.6%,明显高于瓦斯尾巷的23.1%。通过施工、管理的对比分析,布置瓦斯尾巷,必须多掘一条巷道,投资大,增加管理难度、安全隐患等;高位钻场坡度大,人员、设备上下困难,回采过程中钻孔易被压实;高抽巷便于管理、观测,易于控制瓦斯抽出量。在李雅庄煤矿现有的综合条件下,高抽巷能起到最好的瓦斯治理效果。  相似文献   

11.
为了分析瓦斯与煤自燃多场耦合致灾特性,结合瓦斯抽采引起的采空区混合气体流动、气体组分渗流与采空区渗透率变化、固气两相热量传输等多物理过程,建立了基于综放采空区高位钻孔瓦斯抽采的热-流-化多场耦合数学模型,采用COMSOL软件模拟了综放采空区高位钻孔抽采瓦斯诱导煤自燃过程,阐明了瓦斯与煤自燃多场耦合致灾机理,得到了寸草塔二矿31102综放采空区氧化带范围与高温范围,并探讨了抽采强度对综放采空区氧浓度场与温度场的影响。研究结果表明:高位钻孔抽采瓦斯有效地降低了回风巷瓦斯浓度,保证了31102综放工作面安全高效回采。增大综放采空区高位钻孔抽采瓦斯强度不能保证煤自燃安全性,二者存在矛盾,在得到高效抽采瓦斯的同时,会造成进风侧氧化带宽度增加,采空区氧化带边界向深处蔓延,扩大煤自燃高温区域,漏风携氧充分的参与煤氧复合反应,采空区最高温度逐渐上升,煤自燃风险增大。  相似文献   

12.
为了实现瓦斯与煤自燃两大灾害的联合防治,首先对布置高抽巷条件下瓦斯与遗煤自燃多因素相互影响关系进行了理论分析和归纳总结。结合淮南潘二煤矿11223高瓦斯易自燃工作面,建立了带有高抽巷的物理模型,利用UDF编译了本煤层与邻近层瓦斯涌出源项、采空区三维孔隙率和低温条件下煤氧化反应氧气消耗速率。在此基础上,分析了高抽巷布置参数和抽采参数以及工作面风量对高抽巷瓦斯抽采效果和采空区自燃带分布相互影响的规律。结果表明,当工作面风量为2 000 m3/min,高抽巷布置在顶板上方40 m时,高抽巷瓦斯抽采浓度和纯量分别达32.3%和29.07 m3/min,占总瓦斯涌出量的69.71%,同时能满足实际防火的要求。研究结果可为类似条件下高抽巷最佳施工与抽采参数提供借鉴。  相似文献   

13.
高瓦斯煤层综放开采瓦斯与煤自燃综合治理研究   总被引:6,自引:1,他引:6  
针对淮南潘三煤矿低透气性高瓦斯易自燃煤层综放开采的实际情况 ,笔者在综合分析影响综放面安全开采的瓦斯和煤自燃因素基础上 ,提出并实施了顶板走向长钻孔覆岩卸压瓦斯抽放、本煤层顺层孔卸压瓦斯抽放、尾巷抽放和排放等综合瓦斯治理措施 ,通过适时合理的工作面通风系统能位调整 ,合理配备工作面风量和控制采空区漏风量 ,解决了综放面回采时的瓦斯问题 ,有效控制了采空区煤炭自燃的发展 ,实现工作面的安全快速推进。实践证明 ,顶板走向长钻孔覆岩卸压瓦斯抽放是解决低透气煤层瓦斯抽放率低的有效方法 ,回采面的瓦斯抽放率在 30 %以上 ;尾抽和尾排是低透气性高瓦斯煤层安全生产的有效辅助措施 ,但其对工作面采空区煤炭自燃的“三带”有显著影响 ,影响的关键因素是通过采空区尾排及尾抽的混合流量。笔者提出的方法对类似条件的高瓦斯易自燃煤层综放安全开采有重要的指导意义。  相似文献   

14.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

15.
为了研究“U+I”型工作面进风量和顶板巷抽采负压对工作面瓦斯浓度与采空区氧化带宽度的影响,协调瓦斯抽采和浮煤自燃之间的关系。以2306综放面为工程背景,基于“U”型冒落岩层孔隙率分布公式和流体通用控制方程建立采空区数值模拟解算模型。采用CFD软件对不同进风量、不同抽采负压下的工作面瓦斯浓度和采空区氧化带宽度进行模拟,结果表明:随着工作面风量的增加,工作面和顶板巷瓦斯浓度减小,但工作面处浓度减幅逐渐变小而顶板巷浓度减幅几乎不变;提高顶板巷抽采负压,对减少工作面瓦斯浓度效果明显,顶板巷自身瓦斯浓度先增加再减小,采空区进风侧氧化带宽度变窄,回风侧和采空区中部氧化带宽度增加,总体上增加了采空区浮煤自燃的危险性但影响程度有限。  相似文献   

16.
为解决大采高厚煤层工作面回采期间瓦斯超限难题,应用顶板走向长钻孔中位钻孔和下临近层底板定向长钻孔等瓦斯抽采措施,对回采面瓦斯进行了多源头治理。通过对顶板走向长钻孔的抽采效果考察,确定其垂直层位为40±5 m范围、水平层位为50±10 m范围为最佳瓦斯抽采区域;中位钻孔合理的垂直层位为20 m左右,水平层位为45~50 m范围抽采效果最佳;下临近层底板定向长钻孔是拦截下部5#煤和7#煤向上部采掘空间涌出瓦斯的有效手段,其最佳的水平层位为距巷道轮廓线20 m范围,垂直层位为钻孔布置在下临近层煤层中。通过对3种不同瓦斯治理措施的综合评价考察,确定顶板走向长钻孔是治理回采面最为有效的措施,其抽采量占工作面回采期间总抽采量的79.6%,中位钻孔抽采和下临近层底板定向长钻孔抽采是回采面回采期间的辅助性措施。措施使用后,工作面上隅角瓦斯浓度保持在0.4%~0.6%之间,有效保证了工作面的安全高效回采。  相似文献   

17.
下保护层开采卸压瓦斯治理技术研究   总被引:4,自引:0,他引:4  
以潘一东矿1252(1)下保护层首采工作面为研究对象,采用分源预测法对下保护层工作面瓦斯涌出情况进行预测。计算结果表明,1252(1)工作面的瓦斯有六成左右来自上邻近13—1煤层,在本煤层回采期间提出了地面钻井、底抽巷穿层钻孔、高位钻场顶板走向钻孔、沿空留巷充填墙埋管等瓦斯治理方案,抽采率达到90%左右,工作面上隅角完全杜绝瓦斯浓度超限现象,保护范围内的13—1煤层的突出危险性也显著降低。  相似文献   

18.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

19.
漏风对煤自燃有重要影响,研究漏风形成机制对工作面采空区防火具有重要的作用。针对采空区瓦斯抽采、上覆围岩裂隙发育对采空区漏风影响问题,以沙曲矿沿空留巷综放工作面为研究背景。根据采空区上覆煤岩特性选择经验公式计算采空区裂隙发育高度,分析了沿空留巷侧采空区上覆裂隙发育,现场实测了沿空留巷压埋管及高位钻孔中气体体积分数,并根据实测参数利用数值模拟分析了瓦斯抽采条件下采空区风流流场变化。结果表明:上覆裂隙成为采空区漏风通道,导通距离在27.2~37.2 m;在沿空留巷侧采空区回采距离100m,其氧气体积分数在10%以上,验证了采空区漏风去向;模拟结果显示,沿空留巷侧采空区立体空间范围内氧气体积分数均达到10%以上,模拟结果与实测基本保持一致。最终确定瓦斯抽采条件下沿空留巷的布置及煤岩裂隙发育是形成漏风通道的主要原因。  相似文献   

20.
沙曲矿为近距离煤层群开采矿,4#煤层为高瓦斯有突出危险煤层,为防止工作面回采时出现瓦斯超限或发生突出危险,并将瓦斯资源加以有效利用,通过在采前、采中及采后分别实施本煤层、邻近层及采空区瓦斯抽采措施,实现平均瓦斯抽采量分别达12.89m3/min、22 m3/min与10 m3/min。采用沿空留巷Y型通风方式,平均配风量3 300 m3/min,实现风排瓦斯量15~20 m3/min,占涌出量的44%。24207工作面回采时,回风瓦斯体积分数稳定在0.4%~0.6%,未发生上隅角瓦斯超限或煤与瓦斯突出现象,日产量由初期的800 t/d提高至3 600 t/d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号