首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
从生态空间的监管需求出发,利用高分辨率卫星数据获取不同生态系统类型的分布状况,分析2012—2017年青岛市生态空间的演变格局,从水源涵养、水土保持、生物多样性维护3个方面评价青岛市生态空间的服务功能变化情况。结果表明:2012—2017年,青岛市生态空间的生态系统结构变化明显,主要表现为森林和城镇面积显著增加,草地、农田、裸地及海洋面积明显减少;水源涵养、水土保持、生物多样性维护功能的生态状况指数的增长率分别为2.63%、0.36%、2.55%,说明生态空间的生态系统服务功能得到提升,生态状况总体呈变好趋势。  相似文献   

2.
衡枣高速公路运营对路侧土壤的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
调查了衡枣高速公路运营对其两侧土壤的污染状况。结果表明,公路路侧的土壤未受到污染,但路侧不同距离的土壤中重金属含量差异性显著,靠近路侧的重金属含量明显偏高,显示路侧的土壤环境已受到公路运营的影响。指出,随着车流量的逐年增多,应在公路路侧修建相应的植被隔离带,并做好监控工作,切实保护好路侧的土壤环境。  相似文献   

3.
建立了饮用水源水中6种磺胺类抗生素的固相萃取超高效液相色谱-串联质谱分析方法.优化了固相萃取、液相色谱、串联质谱多反应监测模式检测的相关参数;采用外标法定量,并对实际饮用水源水样品的基体效应进行评价.实验结果表明,目标化合物在1.0~100.0 μg/L范围内线性关系良好,仪器检出限为0.03~0.54 μg/L,实际水样的加标回收率60% ~ 75%.该本方法灵敏度高,选择性好,外标法定量准确性较好,但实际样品存在一定的基体抑制效应.  相似文献   

4.
2009年4月对长江口及其邻近海域的21个站位进行了大型底栖生物调查,分析了大型底栖动物的环境质量状况,并结合环境因子数据进行了典范对应分析。结果表明,调查共鉴定大型底栖生物56种,多毛类为主要类群。平均生物量为11.26 g/m2,平均丰度为237.4个/m2。生物量、丰度均呈现由近岸向外海递增的趋势。水深、盐度、初级生产力和有机质、重金属是影响调查海域大型底栖生物群落的主要环境因子。大型底栖生物的分布呈现出对有机污染与重金属污染显著的躲避趋势,表明有机污染与重金属污染已显著影响该海域大型底栖生物的生长。而小头虫、寡节甘吻沙蚕、长手沙蚕和丝鳃虫对有机污染和重金属污染展现出较强的的耐受性。  相似文献   

5.
焦作市中马村矿土壤重金属污染调查评价   总被引:1,自引:0,他引:1       下载免费PDF全文
对焦作市中马村矿矸石山周围土壤中5种重金属(Cu、Cr、Pb、Zn、Mn)的含量、分布特征及其污染状况进行了调查与评价。结果表明,矿区土壤不同程度地受到5种重金属的污染,依次为Zn>Pb>Cu>Cr>Mn;土壤综合污染指数为1. 74,属轻污染; 5种重金属元素中Zn、Pb相关性显著,其余均为低度相关。  相似文献   

6.
为修复灌区内土壤有机氯农药污染,降低六氯环己烷对土壤环境的危害,对内蒙古某灌域表层土壤进行采样,利用气相色谱测定50个土壤样品中六氯环己烷及其异构体的含量,并利用ArcGIS空间分析技术确定表层土壤中六氯环己烷的分布状况。样本中六氯环己烷的检出率为96%,各样本中六氯环己烷的浓度范围为未检出~23.0 ng/g,平均浓度为4.4 ng/g。4种异构体含量平均值顺序为γ-六氯环己烷>δ-六氯环己烷>β-六氯环己烷>α-六氯环己烷。灌域东北部和西南部残留浓度较高,并由这2个方向向中部地区逐渐递减,表层土壤中的六氯环己烷分布受土壤黏粒量、不同种植种类和灌溉水源的影响较大。虽受人类耕作的影响,但表层土壤中的六氯环己烷污染水平相对较低。  相似文献   

7.
焦化区苯污染状况及风险评价研究   总被引:1,自引:0,他引:1  
采用顶空气相色谱法对焦化厂附近不同距离采集的土壤样品中苯含量进行了检测,分析了气象、地理位置等因素对苯含量的影响.结果表明,苯浓度值大小为南>北>东>西,在距离焦化厂200m左右处出现最大值,检测结果与当地风向(主导风向为南风)具有较好的相关性;采用大气污染扩散模型对焦化厂附近空气中的苯浓度和最大落地距离进行了计算,结果与土壤中苯的检出规律具有一致性.通过呼吸暴露法对焦化区居民进行了健康风险和泄漏风险评价结果表明,焦化厂的苯产生源直接排放会对附近居民造成严重的安全隐患(Risk=0.008,略小于警戒线0.01),而经过治理后对当地居民造成的致癌风险会大大减小(Risk=0.001);发生苯泄漏时,在E-F稳定度下,距离焦化区最近的村庄1处的浓度值超过中国居住区大气中有毒物质的最高允许浓度11.7倍,具有较大的风险性.  相似文献   

8.
石油污染场地土壤修复技术及工程化应用   总被引:2,自引:0,他引:2       下载免费PDF全文
在分析当前我国土壤受石油污染的状况基础上,介绍目前修复石油污染场地土壤的技术,包括物理修复、化学修复和生物修复等.并对各种技术的修复原理、研究进展、优缺点及其发展趋势进行了综述,结合我国的研究现状与工作基础对该领域今后的研究方向与重点进行了展望.  相似文献   

9.
综述了国内外土壤调查相关质量保证与质量控制工作概况。针对2016—2021年全国土壤污染状况详查(简称“土壤详查”)工作特点,明确了土壤详查质量保证与质量控制技术路线及方法,总结了其在强力协调、全面指导、过程协同、信息化应用、创新质控手段等方面的成功经验,提出了深入挖掘土壤详查质量管理成果、加强土壤环境监测分析方法研究、加强土壤质量控制样品和标准物质研制、研究建立土壤环境调查单位分级评价体系、持续探索日常土壤环境调查质量控制工作模式等相关建议,以期为后续土壤调查的质量管理提供参考。  相似文献   

10.
通过对A、B两地农田土壤及其潜在污染源燃煤尘、交通尘和尾气尘等样品中多环芳烃(PAHs)的检测,结果表明,A、B两地土壤样品中∑PAHs范围分别为290 ng/g~2. 53× 10~3ng/g和564 ng/g~5. 50× 10~3ng/g,污染程度为中等—严重,且呈现出由工业园区周边土壤到化工企业周边土壤至油田周边土壤逐渐加重的趋势。A、B两地不同固体样品中∑PAHs由高到低分别为尾气尘交通尘燃煤尘土壤和尾气尘交通尘土壤燃煤尘。源解析表明,研究区土壤中PAHs受混合源(石油源和燃烧源)污染。燃烧源既有石油及其精炼产品的燃烧,又有木材、煤燃烧。  相似文献   

11.
Water use sources of desert riparian Populus euphratica forests   总被引:2,自引:0,他引:2  
Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.  相似文献   

12.
A methodology for regional application of forest simulation models has been developed as part of an assessment of possible climate change impacts in the Federal state of Brandenburg (Germany). Here we report on the application of a forest gap model to analyse the impacts of climate change on species composition and productivity of natural and managed forests in Brandenburg using a statistical method for the development of climate scenarios. The forest model was linked to a GIS that includes soil and groundwater table maps, as well as gridded climate data with a resolution of 10 × 10 km and simulated a steady-state species composition which was classified into forest types based on the biomass distribution between species. Different climate scenarios were used to assess the sensitivity of species composition to climate change. The simulated forest distribution patterns for current climate were compared with a map of Potential Natural Vegetation (PNV) of Brandenburg.In order to analyse the possible consequences of climate change on forest management, we used forest inventory data to initialize the model with representative forest stands. Simulation experiments with two different management strategies indicated how forest management could respond to the projected impacts of climate change. The combination of regional analysis of natural forest dynamics under climate change with simulation experiments for managed forests outlines possible trends for the forest resources. The implications of the results are discussed, emphasizing the regional differences in environmental risks and the adaptation potentials of forestry in Brandenburg.  相似文献   

13.
Siberian forests occupy a significant part of the Asian continent. Their role as an essential component of the Earth's surface, biomass and oxygen producer is increasing annually. Expanded reproduction of taiga forests necessitated by the intensive development of Siberian productive forces, results in an evergrowing need of forest productivity constancy and increase. Proper forest exploitation is a crucial part of the solution of such important problems as the rational use of land and water resources, stable crop yields, and the creation of favourable conditions for human life.To solve these important economic problems, the Siberian branch of the USSR Academy of Sciences has devised a long-term programme of ecological monitoring of Siberian forest resources using aerospace techniques. The programme provides for the establishment and improvement of ecogeographical and physicotechnological principles of the remote sensing of forests and the development of fundamental forest-biological research based on new methodologies, the results of which are used to solve urgent forestry and nature protection problems. The research is carried out in the following major directions: studying spectral characteristics of forest vegetation for forest-state indication; thematic mapping of taiga territories; assessing biological productivity of natural complexes; environmental state monitoring; fire protection of forests; pest and disease control; developin instruments and methods for automatized aerospace data processing for real-time use.We consider forest-state monitoring to be one of the crucial tools in providing the optimum use of forest ecosystems for resource and ecological functions.  相似文献   

14.
Carbon Sequestration Potential of Indian Forests   总被引:3,自引:0,他引:3  
The forestry sector can not only sustain its carbon but also has the potential to absorb carbon from the atmosphere. India has maintained approximately 64 Mha of forest cover for the last decade. The rate of afforestation in India is one of the highest among the tropical countries, currently estimated to be 2 Mha per annum. The annual productivity has increased from 0.7 m3 per hactare in 1985 to 1.37 m3 per hectare in 1995. Increase in annual productivity directly indicates an increase in forest biomass and hence higher carbon sequestration potential. The carbon pool for the Indian forests is estimated to be 2026.72 Mt for the year 1995. Estimates of annual carbon uptake increment suggest that our forests and plantations have been able to remove at least 0.125 Gt of CO2 from the atmosphere in the year 1995. Assuming that the present forest cover in India will sustain itself with a marginal annual increase by 0.5 Mha in area of plantations, we can expect our forests to continue to act as a net carbon sink in future.  相似文献   

15.
This study investigated the interactions between tree-herb layer diversity and some physico-chemical and eco-physiological characteristics of soil in natural oriental beech stand in western Guilan, Iran. The data were collected from nine research sites (50 m?×?50 m) which were described as a gradient from pure oriental beech (Fagus orientalis Lipsky) stands to mixed stands with up to nine deciduous tree species (n =?27) in Hyrcanian forest. Herbaceous plants were sampled within ten 1 m?×?1 m sub-plots in two plots of 400 m2 which were installed randomly in each research site. Composite soil samples were taken at five positions in each research site. We found that the increase in tree diversity in mature oriental beech stands brought about an increase in microbial biomass carbon, soil carbon content, and the ratio of microbial biomass carbon to the organic carbon (Cmic/Corg). Increased soil organic carbon raised microbial biomass carbon through creating suitable environment for microorganisms. The findings also indicated that the ratio of microbial biomass carbon to the organic carbon (Cmic/Corg) increased as a quantitative indicator of soil carbon dynamics that finally benefits soil fertility of mixed oriental beech stands compared to pure oriental beech stands. The results showed that humus layer and litter thickness were negatively correlated with tree layer richness. Generally, it can be stated that maintaining a mixture of tree layer species in natural oriental beech stands results in an increase in richness and diversity values of herb plants as well as carbon content and microbial biomass carbon of soil.  相似文献   

16.
New forest management and planning approaches are designed to optimize forest structure. Optimal forest structure was determined using newly established growth models while considering primary timber production objectives as well as non-timber objectives for inaccessible areas and social and political pressures on land management. With currently planned management the forests of the Ormanüstü Planning Unit (OPU) in the Black Sea region of northern Turkey are likely to become an important C sink. To quantify this potential C sink and understand its implication to the regional carbon budget and future forest management, we estimated the changes in the OPU between 1973 and 2006. Based on four periods of data for the OPU forests obtained from the Forest Management and Planning Office of Turkey, we used allometric biomass and C regression equations along with biomass expansion factors to estimate the forest biomass carbon pool for each of four inventory years 1973, 1984, 1997, and 2006. Since 1973, OPU forests have accumulated 110.2?×?103 tons of C as a result of forest expansion and the growth of extant forests, increasing by 50.8 % from 217?×?103 tons in 1973 to 327.2?×?103 tons C in 2006. Hardwood and softwood forests accounted for 44 and 56 % of carbon accumulation during this period, respectively. From 1973 through 2006, forest C accumulated at a rate of 3.3?×?103 tons C year?1. Carbon density of the OPU forests in the Black Sea region increased by 48.2 % from 5,679 to 8,419 tons/ha.  相似文献   

17.
A study was performed selecting one protected forest and an adjacent degraded forest ecosystem to quantify the impact of forest degradation on soil inorganic nitrogen, fine root production, nitrification, N-mineralization and microbial biomass N. There were marked seasonal variations of all the parameters in the upper 0–10 and lower 10–20 cm depths. The seasonal trend of net nitrification and net N-mineralization was reverse of that for inorganic nitrogen and microbial biomass N. Net nitrification, net N-mineralization and fine root biomass values were highest in both forests during rainy season. On contrary, inorganic nitrogen and microbial biomass N were highest during summer season. There was a marked impact of forest degradation on inorganic nitrogen, fine root production nitrification, N-mineralization and microbial biomass observed. Soil properties also varied with soil depth. Fine root biomass, nitrification, N-mineralization and microbial biomass N decreased significantly in higher soil depth. Degradation causes decline in mean seasonal fine root biomass in upper layer and in lower depth by 37% and 27%, respectively. The mean seasonal net nitrification and N-mineralization in upper depth decreased by 42% and 37%, respectively and in lower depth by 42.21% and 39% respectively. Similarly microbial biomass N also decreased by 31.16% in upper layer 33.19% in lower layer.  相似文献   

18.
The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r?=?0.74, p?<?0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in Canada and how these forests are changing in response to changing climate and disturbance regimes.  相似文献   

19.
Forest ecosystems have an important role in carbon cycle at both regional and global scales as an important carbon sink. Forest degradation and land cover changes, caused by deforestation and conversion to non-forest area, have a strong impact on carbon storage. The carbon storage of forest biomass and its changes over time in the Hartlap planning unit of the southeastern part of Turkey have been estimated using the biomass expansion factor method based on field measurements of forests plots with forest inventory data between 1991 and 2002. The amount of carbon storage associated with land use and land cover changes were also analyzed. The results showed that the total forested area of the Hartlap planning unit slightly increased by 2.1 %, from 27,978.7 ha to 28,282.6 ha during the 11-year period, and carbon storage increased by 9.6 %, from 390,367.6 to 427,826.9 tons. Carbon storage of conifer and mixed forests accounted for about 70.6 % of carbon storage in 1991, and 67.8 % in 2002 which increased by 14,274.6 tons. Land use change and increasing forest area have a strong influence on increasing biomass and carbon storage.  相似文献   

20.
Site index is an important forest inventory attribute that relates productivity and growth expectation of forests over time. In forest inventory programs, site index is used in conjunction with other forest inventory attributes (i.e., height, age) for the estimation of stand volume. In turn, stand volumes are used to estimate biomass (and biomass components) and enable conversion to carbon. In this research, we explore the implications and consequences of different estimates of site index on carbon stock characterization for a 2,500-ha Douglas-fir-dominated landscape located on Eastern Vancouver Island, British Columbia, Canada. We compared site index estimates from an existing forest inventory to estimates generated from a combination of forest inventory and light detection and ranging (LIDAR)-derived attributes and then examined the resultant differences in biomass estimates generated from a carbon budget model (Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3)). Significant differences were found between the original and LIDAR-derived site indices for all species types and for the resulting 5-m site classes (p?<?0.001). The LIDAR-derived site class was greater than the original site class for 42% of stands; however, 77% of stands were within ±1 site class of the original class. Differences in biomass estimates between the model scenarios were significant for both total stand biomass and biomass per hectare (p?<?0.001); differences for Douglas-fir-dominated stands (representing 85% of all stands) were not significant (p?=?0.288). Overall, the relationship between the two biomass estimates was strong (R 2?=?0.92, p?<?0.001), suggesting that in certain circumstances, LIDAR may have a role to play in site index estimation and biomass mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号