首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plastic products used for packaging are often discarded after a single use resulting in an inexhaustible supply of waste polymeric materials. The stiffness and strength of polymeric materials have been known to improve with the addition of lignocellulosic fibres available in abundance in nature. Hence, composite materials containing natural fibres and waste plastics would result in the reduction of solid wastes and the use of cheap, renewable resources. Composite specimens, consisting of waste plastics obtained from a Kerbside collection (high density polyethylene (HDPE) waste, Janitorial waste, Kerbside waste I and Kerbside waste II) and Pinus radiata woodfibres (medium density fibres (MDF)), have been produced through melt blending and injection moulding. The effects of fibre content, matrix type and interfacial bonding on the tensile and flexural properties of these composite materials have been determined through extensive testing at various conditions. The mechanical properties of these composites at room temperature and humidity depend on the amount of woodfibres, the mechanical properties of the waste plastics used and the presence of a suitable coupling agent. The tensile strengths of MDF/waste plastic composites do not generally change with fibre content except for 40% MDF/HDPE waste and 40% MDF/Kerbside waste II (plus 1% Epolene™) composites, where the tensile strengths increase by about 25% compared to those of the corresponding waste plastics. Flexural strengths of MDF/waste plastic composites increase with the addition of medium density fibres with the exception of MDF/Kerbside waste I composites. The tensile and flexural moduli of MDF/waste plastic composites mostly increase with increasing fibre content.  相似文献   

2.
The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO2 emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84–154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO2 emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO2 emissions (4.3% of total USA industrial emissions) and 1.19 million m3 crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing, interfacial bonding and control moisture sensitivity in longer run.  相似文献   

3.
The present study focuses on the recycling of gneiss rock waste generated by the ornamental rock industry for manufacturing vitrified floor tile products. The gneiss rock waste came from a rock-cutting plant located in Santo Antônio de Pádua-RJ, Brazil. Initially the waste sample was characterized for chemical composition, X-ray diffraction, particle size, morphology, and pollution potential. Floor tiles containing up to 47.5 wt.% waste were prepared. The tiles were tested to determine their physical-mechanical properties (linear shrinkage, water absorption, apparent density, and flexural strength). Microstructural evolution was carried out by scanning electron microscopy. The results indicate that the gneiss rock waste could be used for vitrified floor tile production, resulting in a new possibility for recycling this waste and conserving natural resources.  相似文献   

4.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

5.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

6.
聚合物在粘土及钻井液固体颗粒表面的吸附   总被引:1,自引:0,他引:1  
围绕废弃钻井液的处理,采用非分散红外TOC仪测聚合物吸附量,研究了聚合物PAM、PHP、FA367、CPAM在粘土及钻井液固体颗粒表面的吸附特性,研究结果表明聚合物在粘土颗粒表面的吸附是高度不可逆的,聚合物高分子与粘土因氢键、静电及嵌入三种相互作用方式而吸附,阳离子型聚合物絮凝剂在钻井液固体颗粒表面比阴离子和非离子型絮凝剂有高得多的吸附性能,废弃钻井液的絮凝主要以“吸附架桥”机理为主。  相似文献   

7.
Utilization of silica fume in concrete: Review of hardened properties   总被引:1,自引:0,他引:1  
Several types of industrial byproducts are generated. With increased environmental awareness and its potential hazardous effects, utilization of industrial byproducts has become an attractive alternative to disposal. One such by-product is silica fume (SF), which is a byproduct of the smelting process in the silicon and ferrosilicon industry. Silica fume is very effective in the design and development of high strength high performance concrete.This paper covers the physical, chemical properties of silica fume, and its reaction mechanism. It deals with the effect of silica fume on the workability, porosity, compressive strength, splitting tensile strength, flexural strength, creep and shrinkage of concrete.  相似文献   

8.
Mechanical recycling of 100% post-consumer plastic waste into high-quality products has been performed. The chemical and physical properties of these recycled materials have been compared with similar products manufactured from virgin resins. The properties of a blow-moulded bottle prepared from 100% post-consumer high-density polyethylene (HDPE) showed that this recycled polymer exceeded the materials specifications for virgin plastic designs. Similarly, a sample of thermoplastic polyolefin (TPO, 100% polypropylene), obtained entirely from shredder residue (SR) displayed sufficient material strength for future separation and reprocessing.  相似文献   

9.
大孔吸附树脂在废水处理中的应用   总被引:4,自引:0,他引:4  
大孔吸附树脂是一类新型高分子聚合物,它具有物理化学稳定性高、吸附选择性高、不受无机物存在的影响、再生简便、解吸条件温和、使用周期长、宜于构成闭路循环、节省费用等诸多优点,广泛应用于各个领域,尤其是废水的处理,具有良好的应用前景。本文综述了大孔吸附树脂的基本原理及其针对各种具体的有机物进行吸附的效果调查情况。  相似文献   

10.
Due to ever increasing quantities of waste materials and industrial by-products, solid waste management is the prime concern in the world. Scarcity of land-filling space and because of its ever increasing cost, recycling and utilization of industrial by-products and waste materials has become an attractive proposition to disposal. There are several types of industrial by-products and waste materials. The utilization of such materials in concrete not only makes it economical, but also helps in reducing disposal concerns. One such industrial by-product is waste foundry sand (SFS). Waste foundry sand is a by-product of ferrous and nonferrous metal casting industries. Foundries successfully recycle and reuse the sand many times in a foundry. When the sand can no longer be reused in the foundry, it is removed from the foundry and is termed as waste foundry sand.Published literature has shown that WFS could be used in manufacturing Controlled Low-Strength Materials (CLSM) and concrete. This paper presents an overview of some of the research published on the use of WFS in concrete. Effect of WFS on concrete properties such as compressive strength, splitting tensile strength, modulus of elasticity, freezing-thawing resistance, and shrinkage are presented.  相似文献   

11.
In our previous work, the prepared high-impact polystyrene (HIPS) membranes, synthesized using four concentrations (20, 25, 30, and 35 wt%) of waste HIPS, were proved to be promising for water purification by microfiltration process (MF). However, the fabricated membranes' mechanical properties and microfiltration process parameters were not investigated. Consequently, in this study, various parameters affecting the previously fabricated membranes' performance in the filtration process, such as membrane mechanical properties, feeding pressure, fouling behavior, and polymer concentration, were thoroughly investigated. With increasing polystyrene concentrations, the ultimate tensile strength of the fabricated membranes increased. When the concentration was increased from 20 to 25 wt percent, the elongation at break rose, but as the concentration was increased further, the membrane became brittle. Permeate flux and rejection both declined as polymer content was raised. Accordingly, the highest flux and humic acid (HA) rejection were shown by 20 wt% (14.18 L/m2h (LMH) and 98.95%, respectively). The antifouling properties declined when the polymer concentration was raised, and 20 wt% had the lowest total fouling resistance. Furthermore, the permeate flux was reduced while increasing the HA initial concentration.  相似文献   

12.
The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact.  相似文献   

13.
Post-consumer carpet represents a high volume, high energy content waste stream. As a fuel for co-firing in cement kilns, waste carpet, like waste tires, has potential advantages. Technological challenges to be addressed include assessing potential emissions, in particular NO emissions (from nylon fiber carpets), and optimizing the carpet feed system. This paper addresses the former. Results of pilot-scale rotary kiln experiments demonstrate the potential for using post-consumer waste carpet as a fuel in cement kilns. Continuous feeding of shredded carpet fiber and ground carpet backing, at rates of up to 30% of total energy input, resulted in combustion without transient puffs and with almost no increase in CO and other products of incomplete combustion as compared to kiln firing natural gas only. NO emissions increased with carpet waste co-firing due to the nitrogen content of nylon fiber. In these experiments with shredded fiber and finely ground backing, carpet nitrogen conversion to NO ranged from 3 to 8%. Conversion increased with enhanced mixing of the carpet material and air during combustion. Carpet preparation and feeding method are controlling factors in fuel N conversion.  相似文献   

14.
The performance of a mixture of a forest bye product and cement for the production of storage structure for harvested rainwater was assessed. Three mix ratios of Cement: Gmelina arborea sawdust 3.0:1.0 (specimen A), 2.5:1.0 (specimen B) and 2.0:1.0 (specimen C) were considered. Engineering properties and dimensional stability of the different mix-ratios were monitored from prototypes cylindrical pots and test billet specimens. Possible change in quality of stored rainwater, with time was monitored in all the three cases. Water quality parameters monitored include pH, hardness, total suspended solids, alkalinity, acidity and total dissolved CO2. The tensile stress obtained were 110, 104, and 95 N/mm2, while the compressive strength were 5,000, 3,000, and 2,000 kN for specimens A, B and C respectively. Accelerated aging test showed that sample A were more resistant to deformation, while specimen C were more susceptible to change in structure over time. Similarly, the values of tensile and compressive strength after accelerated aging test increased in the order of specimen A > B > C. Except in specimen C where significant differences in alkalinity and acidity were observed, there were no significant differences in quality of the water stored in the pots after 2 months of storage. The results indicate the suitability of the Gmelina arborea waste as an alternative in constructing water storage structures in rural communities.  相似文献   

15.
In the present work, the crude biodiesel produced from spent fish frying oil through alkaline catalyzed transesterification was purified using a low-cost adsorbent viz. sulfonated tea waste. After separating the glycerol, the crude biodiesel was purified using the suggested adsorbent. Various methods of purification using the said adsorbent were applied such as purification using adsorption column chromatography and shaking methods. The results showed that purification using adsorption column chromatography exhibited the bst result. Properties of the purified fuels were determined and found conformed to those specified by the ASTM standards. For the sake of comparison, purification using zeolite and water washing method was also investigated. The result indicated that the suggested adsorbent was more successful on purification of the crude biodiesel compared to other methods.  相似文献   

16.
反硝化脱氮固体碳源材料研究进展   总被引:2,自引:0,他引:2  
在污水处理中,固体碳源是制约生物反硝化脱氮的重要因素。天然固体碳源有着丰富的来源,但是机械强度低;人工合成固体碳源有很好的物理性质,但是造价较高;天然高分子材料经过改造后具有价格低、物性好的优点,因而成为研究的热点,且具有很好的市场前景。  相似文献   

17.
The seaweed Ascophyllum nodosum was pre-treated by successive washes in distilled water and dilute acid, dried, and pulverised to produce particles of <150 microm. These were immobilised during the manufacturing process of Hypol 2002 polymer to form a biomass/polymer matrix that was stable and easy to handle. In making the composite a mixing speed of 360 rpm for 20-30 s with 2% (w/w) addition of surfactant to pre-polymer was found to be ideal. The average pore sizes for different water polymer mixes (expressed as volume ratios) were 1.66 mm +/- 0.98 (ratio 0.75:1), 1.58 mm +/- 0.76 (ratio 1:1), 1.64 mm +/- 0.6 (ratio 1.5:1) and 1.11 mm +/- 0.615 (ratio 2:1). The biomass/polymer was used alongside free native biomass in an initial adsorption experiment using a 0.0315 mmol dm(-3) Cu (II) solution and gave a copper uptake capacity [Formula: see text] of 0.037 mmol Cu g(-1) dry weight seaweed in both cases which represented approximately 85% of total initially available copper. In later adsorption isotherm experiments using Cu concentrations between 0.0315 and 0.944 mmol dm(-3) at pH 5.0 and immobilized biomass over five consecutive adsorption/desorption cycles the biomass/polymer showed an initial lowering of adsorption capacity but stabilised at 0.23 mmol g(-1) dry weight by the third re-use. The q(max) of the immobilised biomass decreased from 0.55 and 0.416 mmol of Cu g(-1) dry weight when pH was lowered from 4.0 to 3.0, and increased from 0.576 mmol g(-1) dry weight (biomass) at 283 K to 0.636 mmol g(-1)(biomass) at 303 K.  相似文献   

18.
Engineering properties of asphalt concrete made with recycled glass   总被引:1,自引:0,他引:1  
Taiwan is an island nation with high population density: 23 million people living in a total land area of 30 000 sq. km. The island has transformed from an agricultural society to an industrial one in the past three decades. Coming with the transformation is a cumulated waste problem. Taiwan produces nearly 5 million tons of waste each year, of which 10% is of glass materials. Bureau of Highway Department funded a research program to investigate ways of recycling the glass waste. This report presents information on the program and laboratory/field test data. Materials used in the test program included 85/100 asphalt, Type II modified asphalt, and treated glass waste. Four glass contents: 0, 5, 10, and 15%, in terms of the total aggregate weight, were used in the mixture designs for casting series of 10 cm diameter by 6.35 cm disk specimens. Tests including Marshall stability value, dry/wet moisture damage, skid resistance, light reflection, water permeability, and compaction were carried out in accordance with the ASTM and AASHTO procedures. The test results reveal that glass waste is a viable material for asphalt concrete that has been widely used in pavement that offers profound engineering and economic advantages.  相似文献   

19.
Commercial composting operations generally do not accept organic wastes with plastic twines from the greenhouse vegetable industry and the bulk of the waste materials ends up in landfills. The objectives of this paper are to identify environmentally compatible substitutes that could replace the current use of petrochemically derived plastic twines in greenhouse vegetable production, thus diverting them from landfills, and to assess the extent of their degradation via composting. Physical properties of the twines, including linear density, percent weight loss and tensile strength were monitored for the biodegradation tests. A pilot-scale composting trial was conducted in an in-vessel composting system. Results showed that the three biodegradable twine materials (cotton, jute and EcoPLA) could degrade readily in a composting environment within a reasonable time frame. Specifically, at the end of 105 days of composting, 85.3%, 84.8% and 81.1% of weight loss was observed for cotton, jute and EcoPLA, respectively. Furthermore, EcoPLA exhibited a slower decline in tensile strength with time, when compared to jute and cotton.  相似文献   

20.
Large amounts of solid wastes are discarded in the ornamental rocks industry. This work investigates the incorporation of ornamental rock-cutting waste as a raw material into an aluminous porcelain body, replacing natural feldspar material by up to 35 wt.%. Formulations containing rock-cutting waste were pressed and sintered at 1350 °C. The porcelain pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, mechanical strength, and electrical resistivity). Development of the microstructure was followed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The results showed that ornamental rock-cutting waste could be used in aluminous porcelains, in the range up to 10 wt.%, as a partial replacement for traditional flux material, resulting in a valid route for management of this abundant waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号