首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Laws mandating phosphorus (P)-based nutrient management plans have been passed in several U.S. Mid-Atlantic states. Biosolids (sewage sludge) are frequently applied to agricultural land and in this study we evaluated how biosolids treatment processes and biosolids P tests were related to P behavior in biosolids-amended soils. Eight biosolids generated by different treatment processes, with respect to digestion and iron (Fe), aluminum (Al), and lime addition, and a poultry litter (PL), were incubated with an Elkton silt loam (fine-silty, mixed, active, mesic Typic Endoaquult) and a Suffolk sandy loam (fine-loamy, siliceous, semiactive, thermic Typic Hapludult) for 51 d. The amended soils were analyzed at 1 and 51 d for water-soluble phosphorus (WSP), iron-oxide strip--extractable phosphorus (FeO-P), Mehlich-1 P and pH. The biosolids and PL were analyzed for P, Fe, and Al by USEPA 3050 acid-peroxide digestion and acid ammonium oxalate, Mehlich-1, and Mehlich-3 extractions. Biosolids and PL amendments increased extractable P in the Suffolk sandy loam to a greater extent than in the Elkton silt loam throughout the 51 d of the incubation. The trend of extractable WSP, FeO-P, and Mehlich-1 P generally followed the pattern: [soils amended with biosolids produced without the use of Fe or Al] > [PL and biosolids produced using Fe or Al and lime] > [biosolids produced using only Fe and Al salts]. Mehlich-3 P and the molar ratio of P to [Al + Fe] by either the USEPA 3050 digestion or oxalate extraction of the biosolids were good predictors of changes in soil-extractable P following biosolids but not PL amendment. Therefore, the testing of biosolids for P availability, rather than total P, is a more appropriate tool for predicting extractable P from the biosolids-amended soils used in this study.  相似文献   

2.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

3.
Phosphorus dissolution often increases as soils become more reduced, but the mechanisms are not fully understood. The objectives of this research were to determine rates and mechanisms of P dissolution during microbial reduction of a surface soil from the North Carolina Coastal Plain. Duplicate suspensions of silt + clay fractions from a Cape Fear sandy clay loam (fine, mixed, semiactive, thermic Typic Umbraquult) were reduced in a continuously stirred redox reactor for 40 d. We studied the effects of three treatments on P dissolution: (i) 2 g dextrose kg(-1) solids added as a microbial carbon source at time 0 d; (ii) 2 g dextrose kg(-1) solids split into three additions at 0, 12, and 26 d; and (iii) no added dextrose. After 40 d of reduction, concentrations of dissolved reactive phosphorus (DRP) were similar for all treatments and increased up to sevenfold from 1.5 to 10 mg L(-1). The initial rate of reduction and dissolution of DRP was significantly greater for the 0-d treatment. A linear relationship (R(2) = 0.79) was found between DRP and dissolved organic carbon (DOC). Dissolved Fe and Al and pH increased, suggesting the formation of aqueous Fe- and Al-organic matter complexes. Separate batch experiments were performed to study the effects of increasing pH and citrate additions on PO(4) dissolution under aerobic conditions. Increasing additions of citrate increased concentrations of DRP, Fe, and Al, while increasing pH had no effect. Results indicated that increased dissolved organic matter (DOM) during soil reduction contributed to the increase in DRP, perhaps by competitive adsorption or formation of aqueous ternary DOM-Fe-PO(4) or DOM-Al-PO(4) complexes.  相似文献   

4.
Environmental effects of soil property changes with off-road vehicle use   总被引:1,自引:0,他引:1  
The effects of off-road vehicles (ORVs) on the physical and chemical properties of 6 soil series were measured at Hollister Hills State Vehicular Recreation Area in central California. Accelerated soil erosion and the alteration of surface strength, bulk density, soil moisture, temperature, and soil nutrients were quantified to gain an insight into the difficulty of revegetating altered, or modified, areas.Erosion is severe at Hollister Hills, particularly in coarse grained soils on steep slopes. Erosion displaced 0.5 and 3.0 metric tons per square meter on 2 trails on gravelly sandy loam, and 0.3 metric tons/m2 from a trail on sandy loam. The surface strength and bulk density increased while the soil moisture decreased in gravelly sandy loam, coarse sandy loam, sandy loam, and clay. Clay loam had an increased surface strength with variably increased bulk density and no decrease in soil moisture. Diurnal temperature fluctuations increased and organic material and soil nutrients decreased in soil modified by vehicles.These property changes increase the erosion potential of the soil, impede germination of seedlings, and slow natural revegetation. Management methods in ORV-use areas should include planning trails by prior application of the universal soil loss equation and soil surveys, trail closure before complete loss of the soil mantle, and revegetation of closed areas.  相似文献   

5.
Irrigation of citrus (Citrus aurantium L. × Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (~53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH(4+), NO(3-), K(+), Ca(2+), Mg(2+), SO(4)(2-), H(3)BO(3), Cl(-), Fe(2+), Mn(2+), Zn(2+), Co(2+), and Ni(2+), whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO(3-), OH(-), and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season.  相似文献   

6.
The explosive 2,4,6-trinitrotoluene (TNT) is a contaminant of soils and ground waters worldwide. To help alleviate such environmental contamination, we investigated a coupled abiotic-biotic treatment scheme for remediating TNT-contaminated soil in slurry solutions. Two types of soil were used (sandy and silt loam) to simulate different soils that might be found at actual sites. These soils were subsequently contaminated with 5000 mg kg(-1) TNT. Mineralization of TNT was initially optimized for minimum reactant use (Fe(3+) and H(2)O(2)) and maximum soil slurry percentage (percent solids) using modified Fenton reactions conducted in the absence of light followed by the addition of an uncharacterized aerobic biomass. Greater than 97% TNT degradation was observed under optimum reaction conditions for both soils. Using two optimum reactant concentrations for each soil, coupled abiotic-biotic reactions showed an increase in TNT mineralization, from 41 to 73% and 34 to 64% in the sandy soil (10 and 20% slurry, respectively, 1470 mM H(2)O(2)), and increases from 12 to 23% and 13 to 28% in the silt loam soil (5% slurry, 294 and 1470 mM H(2)O(2), respectively). These results show promise in the use of combined abiotic-biotic treatment processes for soils contaminated with high concentrations of TNT.  相似文献   

7.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

8.
There is a lack of information on how fertilization and initial Mehlich-3 phosphorus (M3P) interact to affect water soluble P (WSP) in soils. Our objectives were to (i) quantify the relationship between WSP and M3P for four textural diverse benchmark soils of North Carolina (NC) and (ii) quantify the change in WSP concentrations following P additions to soils over a wide range of initial M3P. Soils known to represent a wide range in M3P were collected from an Autryville loamy sand (loamy, siliceous, subactive, thermic Arenic Paleudults), Wasda muck (fine-loamy, mixed, semiactive, acid, thermic Histic Humaquepts), Georgeville silt loam (fine, kaolinitic, thermic Typic Kanhapludults), and Pacolet sandy clay loam (fine, kaolinitic, thermic Typic Kanhapludults) and analyzed for M3P, Fe, Al, and WSP. An incubation study was also conducted where four samples representing a range in M3P from each series were fertilized at rates of 150 and 300 kg P ha(-1), and WSP was measured at 1, 7, and 21 d after fertilization. The Wasda muck exhibited a change point at 115 mg P kg(-1) across a broad range of M3P concentrations (60-238 mg kg(-1)) while Autryville, Georgeville, and Pacolet series (with ranges in M3P of 32-328, 119-524, 0-1034 mg P kg(-1), respectively) maintained linear relationships between WSP and M3P. For the fertilized soils, significant increases in WSP occurred regardless of P rate. Yet, WSP concentrations were greater in soils with greater initial M3P. Thus, these data suggest that shifting animal waste applications to fields of relatively lower M3P concentrations would have an immediate impact on reducing risk for P losses, if all other factors are equal.  相似文献   

9.
Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones.  相似文献   

10.
There has been widespread interest in using compost to improve the hydrologic functions of degraded soils at construction sites for reducing runoff and increasing infiltration. The objective of this study was to determine the effects of compost amendment rate on saturated hydraulic conductivity (Ks) and water retention in order to identify target compost rates for enhancing soil hydrologic functions. Samples were prepared with three soil textures (sandy loam, silt loam, and sandy clay loam), amended with compost at 0%, 10%, 20%, 30%, 40%, and 50%. All soils were tested at a porosity of 0.5 m3/m3, and the sandy loam was further tested at high (0.55 m3/m3) and low (0.4 m3/m3) porosities. The Ks and water retention data were then used to model infiltration with HYDRUS-1D. With increasing compost amendment rate, Ks and water retention of the mixtures generally increased at the medium porosity level, with more compost needed in heavier soils. As porosity decreased in the sandy loam soil, the amount of compost needed to improve Ks rose from 20% to 50%. Water distribution in pore fractions (gravitational, plant-available, and unavailable water) depended on texture, with only the highest compost rates increasing plant-available water in one soil. Results suggest soil texture should be taken into consideration when choosing a compost rate in order to achieve soil improvement goals. Hydrologic benefits may be limited even at a high rate of compost amendment if soil is compacted.  相似文献   

11.
Municipal sewage sludge is often used on arable soils as a source of nitrogen and phosphorus, but it also contains organic contaminants that may be leached to the ground water. Di(2-ethylhexyl)phthalate (DEHP) is a priority pollutant that is present in sewage sludge in ubiquitous amounts. Column experiments were performed on undisturbed soil cores (20-cm depth x 20-cm diameter) with three different soil types: a sand, a loamy sand, and a sandy loam soil. Dewatered sewage sludge was spiked with 14C-labeled DEHP (60 mg kg(-1)) and bromide (5 g kg(-1)). Sludge was applied to the soil columns either as five aggregates, or homogeneously mixed with the surface layer. Also, two leaching experiments were performed with repacked soil columns (loamy sand and sandy loam soil). The DEHP concentrations in the effluent did not exceed 1.0 microg L(-1), and after 200 mm of outflow less than 0.5% of the applied amount was recovered in the leachate in all soils but the sandy loam soil with homogeneous sludge application (up to 3.4% of the applied amount recovered). In the absence of macropore flow, DEHP in the leachate was primarily sorbed to mobilized dissolved organic macromolecules (DOM, 30.3 to 81.3%), while 2.4 to 23.6% was sorbed to mobilized mineral particles. When macropore flow occurred, this changed to 16.5 to 37.4% (DOM) and 36.9 to 40.6% (mineral particles), respectively. The critical combination for leaching of considerable amounts of DEHP was homogeneous sludge application and a continuous macropore structure.  相似文献   

12.
ABSTRACT: A rainfall simulator was used on runoff plots to study the effects of simulated canopy cover, trampling disturbance, and soil type on nil and interrill erosion. Sandy loam soil was more erodible than clay loam soil. Furthermore, the simulated canopy cover signffi-Soilfactorsrelatedtonil cantly influenced nil and interrill erosion. The effect of trampling on rill and interrill erosion varied with soil type (clay loam versus sandy loam) and erosion type (nh versus interrill erosion). On large plots, where both nil and internill erosion were involved, 30 percent trampling significantly increased soil loss. However, on small plots, 30 percent trampling significantly reduced interrill erosion.  相似文献   

13.
The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam.  相似文献   

14.
Laboratory and greenhouse studies compared the ability of water treatment residuals (WTRs) to alter P solubility and leaching in Immokalee sandy soil (sandy, siliceous, hyperthermic Arenic Alaquod) amended with biosolids and triple superphosphate (TSP). Aluminum sulfate (Al-WTR) and ferric sulfate (Fe-WTR) coagulation residuals, a lime softening residual (Ca-WTR) produced during hardness removal, and pure hematite were examined. In equilibration studies, the ability to reduce soluble P followed the order Al-WTR > Ca-WTR = Fe-WTR > hematite. Differences in the P-fixing capacity of the sesquioxide-dominated materials (Al-WTR, Fe-WTR, hematite) were attributed to their varying reactive Fe- and Al-hydrous oxide contents as measured by oxalate extraction. Leachate P was monitored from greenhouse columns where bahiagrass (Paspalum notatum Flugge) was grown on Immokalee soil amended with biosolids or TSP at an equivalent rate of 224 kg P ha(-1) and WTRs at 2.5% (56 Mg ha(-1)). In the absence of WTRs, 21% of TSP and 11% of Largo cake biosolids total phosphorus (PT) leached over 4 mo. With co-applied WTRs, losses from TSP columns were reduced to 3.5% (Fe-WTR), 2.5% (Ca-WTR), and <1% (Al-WTR) of applied P. For the Largo biosolids treatments all WTRs retarded downward P flux such that leachate P was not statistically different than for control (soil only) columns. The phosphorus saturation index (PSI = [Pox]/ [Al(ox) + Fe(ox)], where Pox, Al, and Fe(ox) are oxalate-extractable P, Al, and Fe, respectively) based on a simple oxalate extraction of the WTR and biosolids is potentially useful for determining WTR application rates for controlled reduction of P in drainage when biosolids are applied to low P-sorbing soils.  相似文献   

15.
Interaction of Cu with dissolved organic matter (DOM) is an important physicochemical process affecting Cu mobility in soils. The aim of this study was to investigate the effects of DOM from anaerobically digested dewatered sludge and sludge compost on the sorption of Cu on an acidic sandy loam and a calcareous clay loam. In the presence of DOM, Cu sorption capacity decreased markedly for both soils, especially for the calcareous soil. The Cu sorption isotherms could be well described by the Freundlich equation (r2 = 0.99), and the binding intensity parameter of soils in the presence of sludge DOM was lower than compost DOM. An increase in DOM concentration significantly reduced the sorption of Cu by both soils. Within the Cu and DOM concentration range studied, the decrease in Cu sorption caused by sludge DOM was consistently greater than that of compost DOM. This might be attributed to the greater amount of hydrophobic fraction of DOM in the compost. Moreover, the reduction of Cu sorption caused by DOM was more obvious in the soil with higher pH. In addition, the sorption of Cu increased with an increase in pH for both soils without the addition of DOM, while Cu sorption in the presence of DOM was unexpectedly decreased with an increase in pH at a pH >6.8. This implied that DOM produced by sludge or other C-enriched organic wastes heavily applied on calcareous soils might facilitate the leaching loss of Cu because of the formation of soluble DOM-metal complexes.  相似文献   

16.
The prospect of using wastewater containing high loads of soluble organic matter (OM) for removing residual agricultural chemicals (fertilizer, pesticide, or herbicide) in farm soil, although promising, could have adverse effects on soil agricultural quality as a result of development of redoximorphic features in the soil profile. In this study, the effect of organic carbon supplement for bioremediation of residual fertilizer nitrate on soil properties, redox potential (Eh), pH, and metal ion mobilization was studied using sandy soils packed in columns. The study was included in a general project, described elsewhere (Ugwuegbu et al., 2000), undertaken to evaluate use of controlled water table management (WTM) systems to supply organic carbon for creating a reduced environment conducive to denitrification of residual fertilizer nitrate leaching from the farm to subsurface water. The columns were subjected to subirrigation with water containing soluble organic carbon in the form of glucose. The work was carried out in two experimental setups and the long-term effect of a range of glucose concentrations on the Eh, pH, and soluble levels of Fe and Mn was investigated. From the results obtained, it could be concluded that excessive organic carbon supplement to soil can have adverse effects on soil quality and that Eh and soluble Fe are the two most practical parameters for monitoring soil health during treatment of farm chemicals.  相似文献   

17.
Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets.  相似文献   

18.
Soil and tree-ring chemistry response to liming in a sugar maple stand   总被引:1,自引:0,他引:1  
An evaluation of the impact of dolomitic lime [CaMg(CO3)2] on soils (five years after treatment) and sapwood chemistry (after four growing seasons) was realized for a Ca-deficient sugar maple stand at the lake Clair watershed. The effect on humus chemistry was significant: exchangeable Mg and Ca, effective acidity (EA), base saturation (BSe), pH, and effective cation exchange capacity (CECe) significantly increased, while exchangeable Fe significantly decreased. In the B horizon, liming increased exchangeable Ca, Mg, and Mn concentrations while decreasing other acid cations. No significant temporal trends in element concentrations in tree rings could be detected, although the lime treatment significantly changed the average xylem Mg and Mn concentrations as well as the average Mg/Mn and Ca/Mn ratios of the sapwood. The absence of temporal trends in rings from the last 20 yr implied a significant re-equilibration of elements through the sapwood. Significant relationships were found between averaged xylem Ca/Mn and Mg/Mn ratios and exchangeable humus Ca, Mg, Mn, Al, Fe, and H+ concentration, EA, CECe, and BSe, suggesting that the average xylem Ca/Mn and Mg/Mn ratios are strong indicators of the soil acid-base status.  相似文献   

19.
Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.  相似文献   

20.
ABSTRACT: Effects of long-term prescribed burning on infiltration and interrill erosion were assessed on two longleaf pine-bluestem sites in Louisiana. Treatments represented biennially-applied winter, spring, or summer burning on an upland sandy loam site for 20 years; and annual winter or spring, and biennial winter or spring burns on a bottomland silt loam site for 10 years, with unburned controls. Immediate effects of burning were a reduction in surface cover, exposing soil to raindrop impact. Burning the sandy loam site increased interrill erosion after winter and spring treatments, but produced no immediate changes in infiltration capacity or time to runoff irrespective of treatment season. Rapid recovery of under-story vegetation mitigated soil exposure. Biennial burning did not increase interrill erosion, or reduce infiltration capacity and time to runoff on the sandy loam site after 20 years. A complete herbaceous understory covered the silt loam site two years after treatment. Interrill erosion was not significantly increased, or infiltration capacity and time to runoff decreased on burning treatments than unburned controls on the silt loam site. Litter biomass was important in predicting interrill erosion. No surface cover condition could be linked to variability in infiltration capacity. This study provides evidence for the resiliency of a longleaf pine-bluestem association to prescribed burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号