首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H2S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H2S is significantly affected by the concentration of CO2 in the syngas. When only a small percentage of CO2 is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H2S removal can be maintained at a high level.To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.  相似文献   

2.
The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m3 and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.  相似文献   

3.
The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions.This study is designed to estimate the N2O emission factors from MSW incineration plants, and calculate the N2O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N2O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment.The average of the N2O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N2O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N2O emissions from MSW incineration comprised 19% of the total N2O emissions.  相似文献   

4.
Hanford tanks contain more than 60 million gallons of high-level wastes produced by decades of extracting plutonium from irradiated uranium fuel. The wastes were concentrated to a thick slurry consistency by evaporation prior to storage to minimize space. The resulting concentrated waste properties introduced unanticipated, detrimental conditions affecting workers' and the public's health and safety and involving the release of potentially flammable gases. The released gases consist primarily of hydrogen, nitrous oxide, and ammonia. Dilution and sluicing were initially proposed to mitigate the flammable gas safety conditions. As a result of evaluations, the mechanisms and conditions that are thought to control the accumulation and spontaneous release of flammable gases were identified and confirmed. The technical rationale was established for developing operational approaches to mitigate the periodic generation of flammable gases in existing tanks and to avoid any reoccurrence of this serious safety problem during future waste management activities. The chemistry of the two highest risk tanks was examined to test the potential for reversing the conditions causing gas buildup and the consequences of sluicing without appropriate chemical conditioning. The identified mechanisms apply equally to the remaining flammable gas tanks at Hanford as well as to other waste tanks in the DOE complex, particularly those at Savannah River. Passive means of mitigating the flammable gas condition require less than 1:1 dilution, and sluicing wastes from tank 106-C can be accomplished without creating a flammable gas condition. Carbonate equilibria reactions and their effect on aluminum speciation are largely overlooked and provided the key for explaining the episodic release of flammable gases from tank wastes. The reaction of atmospheric carbon dioxide with a sodium hydroxide-rich waste solution produces carbonate precipitates. More importantly, this reaction lowers the pH of the waste and precipitates aluminum hydroxide as a gel. The wastes contain substantial amounts of complexing agents such as ethylene diamine tetraacidicacid (EDTA), hydroxy ethylene diamine triacidic acid (HEDTA), and their degradation products. These complexing agents stabilize the aluminum hydroxide gel together with chromium, manganese and iron hydroxides, and oxybydroxides under the resulting pH conditions. These complex species may coprecipitate and accumulate as a metastable layer in the middle and lower levels of th tank. The complexed aluminum hydroxide acts as a binding agent trapping other particulates in a microcrystalline mat. Microcrystalline particles such as sodium nitrite provide the structural strength for the mat. Once the gas accumulation below the gel layer achieves a critical buoyancy sufficient to rupture the microcrystalline mat, a gas release event occurs. The cycle of gas buildup and release continues each time the buoyancy of the trapped gas exceeds the hydrostatic pressure and the gels' plasticity modulus. Stokes Law predicts a particle settling rate in the tank of less than 50 days, well within the bistorical periodicity of GREs. Laboratory tests, forming the basis of a recent patent application, verify that large quantities of complexed aluminum hydroxide gel are produced by passing carbon dioxide through simulated waste solutions (Hobl, 1993) equivalent to those found in tank 101-SY. It was confirmed that a simple adjustment of pH witll redissolve the gel, thereby reducing viscosity and safely facilitating continuous flammable gas release. Additional experiments were undertaken to provide a basis for understanding the role of complexed aluminum hydroxides in the CO2/NaOH/Al(OH)3 (complexing agents)/NaAlO2 system. This article examines a plausible mechanism for the periodic release of flammable gas and considerations for: (1) remediating existing flammable gas tanks through a combination of chemical treatment and mixer pumps; (2) diluting, combining, retrieving, and storing wastes; (3) preventing clogging of transfer lines; (4) sludge and soil washing; and (5) cribs, ponds, basins, and ground-water cleanup. This study provides a singificant breakthrough for tank waste management by explaining key mechanisms controlling episodic release of flammable gases. The breakthrough provides the bases for removing the tanks classified as flammable gas from the wathclist and has broad operational applications with a potential for billions of dollars in cost savings.  相似文献   

5.
The production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H2S) and CaCO3. H2S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO3; however, the reaction yielded low-grade carbonate products (i.e. <90 mass% as CaCO3) which comprised a mixture of two CaCO3 polymorphs (calcite and vaterite), as well as trace minerals originating from the starting material. These products could replace the Sappi Enstra CaCO3 (69 mass% CaCO3), a by-product from the paper industry which is used in many full-scale AMD neutralisation plants but is becoming insufficient. The insight gained is now also being used to develop and optimize an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC).  相似文献   

6.
AV Miljø is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH4) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed that the gas generated in the cell with mixed combustible waste consisted of mainly CH4 (70%) and carbon dioxide (CO2) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH4 (27%) and nitrogen (N2) (71%), containing no CO2. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH4 mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH4 generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH4 emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH4 emission from the disposal site was found to be 820 ± 202 kg CH4 d−1. The total emission rate through the leachate collection system at AV Miljø was found to be 211 kg CH4 d−1. This showed that approximately ¼ of the emitted gas was emitted through the leachate collections system making the leachate collection system an important source controlling the overall gas migration from the site. The emission pathway for the remaining part of the gas was more uncertain, but emission from open cells where waste is being disposed of or being excavated for incineration, or from horizontal leachate drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely.  相似文献   

7.
Deposit formation in leachate collection systems can be problematic for landfill operations. Deposits from municipal solid waste (MSW) derived leachates are impacted by microbial activity and biofilm development, whereas leachates generated from co-disposal of MSW with combustion residues (CR) from waste-to-energy (WTE) facilities and other mineral-rich waste materials are more prone to forming dense mineral deposits dominated by calcium carbonate. In this study, leachates from laboratory lysimeters containing either WTE-CR or shredded MSW were mixed at different volumetric ratios. The mixed leachates were incubated for 5 weeks in batch tests to evaluate the potential for formation of precipitates. Although mineral precipitates have been reported to form in landfills with no co-disposal practices, in this study mineral precipitates did not form in either the WTE-CR derived leachate or the MSW derived leachate, but formed in all leachate mixtures. Mineral precipitates consisted of calcium carbonate particles, with the highest yield from a 1:1 combination of the WTE-CR derived leachate mixed with the MSW derived leachate. The introduction of gaseous carbon dioxide or air into WTE-CR derived leachate resulted in the production of particles of similar chemical composition but different morphology. Operation of landfills to prevent co-mingling of mineral-rich leachates with microbially active leachates and/or to control leachate exposure to sources of carbon dioxide may help to prevent this type of precipitate formation in leachate collection systems.  相似文献   

8.
Eggshell calcium carbonate (ECC) and eggshell calcium carbonate treated with high temperature (ECC-600) were prepared from chicken eggshell waste. ECC was obtained by crushing eggshell waste, eliminating membranes and followed by sieving. In the case of ECC-600, ECC powder was additionally heated at 600 °C for 2 h. Both were used to promote as fillers compared to that of commercial light-precipitated calcium carbonate (commercial CaCO3) with various loading levels (i.e., 0, 25, 50 and 75 phr) in epoxidized natural rubber containing 25 mol% of epoxide group (ENR-25). Among the three types of fillers (i.e., ECC, ECC-600 and commercial CaCO3), ECC filled materials showed superior vulcanization characteristics by the increasing of maximum torque (MH) and cure rate index (CRI) with the reducing of cure time (tc90) and scorch time (ts2). The highest tensile properties as well as the lowest tension set value were also observed. Morphological property revealed that ECC was greater interfacial adhesion than those of others. In addition, dynamic mechanical properties of vulcanizates containing ECC, storage modulus (E′) was the highest and glass transition temperature (T g ) shifted toward high temperature. Increasing of loading levels of any fillers affected the increase of MH and CRI with reducing of tc90 and ts2. However, tensile properties decreased with increasing filler content but it did not affect T g shifting except for a series of vulcanizates containing ECC.  相似文献   

9.
Solid adsorbent materials, prepared from waste cement powder and concrete sludge were assessed for removal of arsenic in the form of arsenic (As(V)) from water. All the materials exhibited arsenic removal capacity when added to distilled water containing 10–700 mg/L arsenic. The arsenic removal isotherms were expressed by the Langmuir type equations, and the highest removal capacity was observed for the adsorbent prepared from concrete sludge with heat treatment at 105 °C, the maximum removal capacity being 175 mg-As(V)/g. Based on changes in arsenic and calcium ion concentrations, and solution pH, the removal mechanism for arsenic was considered to involve the precipitation of calcium arsenate, Ca3(AsO4)2. The enhanced removal of arsenic for the adsorbent prepared from concrete sludge with heat treatment was thought to reflect ion exchange by ettringite. The prepared adsorbents, derived from waste cement and concrete using simple procedures, may offer a cost effective approach for arsenic removal and clean-up of contaminated waters, especially in developing countries.  相似文献   

10.
In this research, absorbents for CO2 capture were prepared by blending 30 wt% potassium carbonate, 3 wt% of a rate promoter, and 1 wt% of a corrosion inhibitor. Pipecolic acid, sarcosine, and diethanolamine were chosen as rate promoter candidates. Based on a rate promoter screening test for CO2 loading capacity and absorption rate, pipecolic acid and sarcosine were selected to be used as rate promoters. 1,2,3-benzotriazole and ammonium thiocyanate were chosen as corrosion inhibitors, and they were mixed with a 30 wt% potassium carbonate-based absorbent mixture containing one of the rate promoters. The absorption rates for four absorbent solutions (30 wt% potassium carbonate?+?3 wt% pipecolic acid?+?1 wt% 1,2,3-benzotriazole, 30 wt% potassium carbonate?+?3 wt% pipecolic acid?+?1 wt% ammonium thiocyanate, 30 wt% potassium carbonate?+?3 wt% sarcosine?+?1 wt% 1,2,3-benzotriazole, and 30 wt% potassium carbonate?+?3 wt% sarcosine?+?1 wt% ammonium thiocyanate) were measured, tabulated, and graphically displayed. These types of absorbents can be used for capturing CO2 under high temperature and pressure conditions, such as those found in coal-fired power plants.  相似文献   

11.
We discuss the current status of waste to power generation (WPG) in Japan and various scenarios involving indirect reduction of carbon dioxide emissions by WPG. The number of WPG facilities domestically as of 2005 was 286. Power generation capacity attained 1,515 MW and power generation 7,050 GWh/year. This amount substitutes energy otherwise acquired from natural resources such as fossil fuels in thermal power plants. If the basic unit of carbon dioxide is 0.555 kg-CO2/kWh, then the corresponding carbon dioxide emission reduction is calculated to be 3.9 million tons, equivalent to 26.7% of the 14.6 million tons emitted by municipal solid waste incinerators (MSWI) in 2005. Using various existing technological options, the power generation efficiency could reach more than 20% in MSWI facilities with capacity of 300 tons/day, although present efficiency is only 12.0%. If about 85% of MSW were incinerated in MSWI with power generation efficiency of 20% as a feasible assumption, the total power generation and the corresponding carbon dioxide reduction would be 16,540 GWh/year and 9.18 million tons, respectively, equivalent to 62.7% of the carbon dioxide emitted by MSWI. Also, the ratio of the additional reduction of carbon dioxide emissions by WPG to the total additional reduction (20,000 ktons/year) in Japan during the first commitment period would be 26.3%, suggesting that promotion of WPG in MSWI is an effective option for prevention of global warming.  相似文献   

12.
Nitrous oxide and carbon dioxide were continuously measured and variability of emission factors (EFs) was evaluated in five municipal waste incinerators (MWIs) and four industrial waste incinerators (IWIs) from 24 to 86 days between 2008 and 2011. N2O EFs were calculated by Monte Carlo simulation and mean N2O EFs were 7.1, 107, 127, 219 g N2O/ton waste combusted in MWIs with selective catalytic reduction (SCR) for NOx control, MWIs with selective non-catalytic reduction (SNCR), IWIs with SNCR, and a MWI using fluidized bed with SNCR, respectively. Climate-relevant CO2 EFs ranged from 0.45 to 0.72 ton CO2/ton waste combusted in MWIs. Maximum values of upper limit for 95% confidence intervals (CIs) of N2O EFs estimated in each MWIs with SCR, MWIs with SNCR, IWIs with SNCR were 185, 94, 101% of mean N2O EFs, respectively. Meanwhile, maximum values of upper limit for 95% CIs of CO2 EFs were much lower as between 18 and 36% in those facilities. 84% CIs of mean N2O EFs in MWIs with SNCR and IWIs with SNCR were overlapped indicating those values are not significantly different.  相似文献   

13.
Since carbon compounds are the main component of dense nonaqueous phase liquids (DNAPLs), the end products of all in situ chemical oxidation (ISCO) will include carbon dioxide. If the production rate of carbon dioxide exceeds the capacity of water to remove the carbon dioxide, degassing will occur. The uncontrolled carbon dioxide gas may change the flow patterns, remobilize the pooled DNAPL, transport DNAPL vapor, and reduce the relative permeability to the aqueous phase. Under high pH buffered conditions, most of the carbon dioxide will be dissolved in water. In this study, potassium permanganate oxidation of tetrachloroethylene (PCE) was conducted using a sodium carbonate buffered solution (1 g/L, pH = 10.6 ± 0.1) at three different temperatures (5, 10, and 20°C) and three potassium permanganate concentrations (0.2, 1, and 5 g/L). Extensive kinetic studies suggest that the overall oxidation is a second‐order reaction and pseudo‐first‐order with respect to PCE and potassium permanganate, respectively. The second‐order rate constant and the activation energy were 0.028 ± 0.001 M?1s?1 at 20°C and 43.9 ± 2.85 kJ/M, respectively. This study provides a base for further experimental and field studies on potassium permanganate oxidation of PCE under natural or artificial high pH buffered conditions. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
Several ISO standards for determining the ultimate aerobic/anaerobic biodegradability of plastic materials have been published. In particular, ISO 14855-1 is a common test method that measures evolved carbon dioxide using such methods as continuous infrared analysis, gas chromatography or titration and others (ISO 14855-1(2005.9)). This method is a small-scale test for determining the ultimate aerobic biodegradability of plastic materials, where the amounts of compost inoculum and test sample in one tenth comparing with that of ISO 14855-1. This method is well versed in ISO/DIS 14855-2 which the carbon dioxide evolved from test vessel is determined by gravimetric analysis of carbon dioxide absorbent. The focus of this study is to elucidate statistically the results of round robin test by seven countries used MODA, which were various deviations among the experiments.  相似文献   

15.
Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO2 absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO2 absorption behavior. Test data has revealed that the model predictions and the observed CO2 absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.  相似文献   

16.
An attempted has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35–40%), acetylene (13–20%), ethylene (3–4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg?1 and the concentrations of toxic gases, such as NOx, HCl and HF, were below the regulatory emissions limit. Gas chromatography–mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 μm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding.  相似文献   

17.
With large quantity of flux (Na2CO3), lead can be recovered from the funnel glass of waste cathode-ray tubes via reduction–melting at 1000 °C. To reduce flux cost, a technique to recover added flux from the generated oxide phase is also important in order to recycle the flux recovered from the reduction–melting process. In this study, the phase separation of sodium and the crystallization of water-soluble sodium silicates were induced after the reduction–melting process to enhance the leachability of sodium in the oxide phase and to extract the sodium from the phase for the recovery of Na2CO3 as flux. A reductive atmosphere promoted the phase separation and crystallization, and the leachability of sodium from the oxide phase was enhanced. The optimum temperature and treatment time for increasing the leachability were 700 °C and 2 h, respectively. After treatment, more than 90% of the sodium in the oxide phase was extracted in water. NaHCO3 can be recovered by carbonization of the solution containing sodium ions using carbon dioxide gas, decomposed to Na2CO3 at 50 °C and recycled for use in the reduction–melting process.  相似文献   

18.
Various research has attempted to determine the proper treatment of sewage sludge, including thermal technologies. Efficient thermal technologies have been focused on because of their energy saving/energy recovery. Gasification technology can be considered one of these approaches. In this study, the characteristics of gasification reactions were investigated with the aim of finding fundamental data for utilizing sewage sludge as an energy source. For the experiments on sewage sludge gasification reaction characteristics, a laboratory-scale experimental apparatus was set up with a fluidizing bed reactor of 70-mm inner diameter and 600-mm total height using an electric muffle furnace. The experimental materials were prepared from a sewage treatment plant located in Seoul. The reaction temperature was varied from 630 to 860°C, and the equivalence ratio from 0.1 to 0.3. The gas yields, compositions of product gas, and cold gas efficiencies of product gas were analyzed by GC/TCD and GC/FID installed with a carboxen-1000 column. The experimental results indicated that 800°C, ER 0.2 was an optimum condition for sewage sludge gasification. The maximum yield of product gas was about 44%. Producer gas from experiments was mainly composed of hydrogen, carbon monoxide, carbon dioxide, and methane. The cold gas efficiency of sewage sludge gasification was about 68%. The H2/CO ratio and CO/CO2 ratio were about 1.1 and 1.4, respectively, in optimum reaction conditions. Gaseous pollutants such as SO2, HCl, NH3, H2S, and NO2 were also analyzed at various gasification/combustion conditions, and their gaseous products were compared, showing significantly different oxidized product distributions.  相似文献   

19.
The disposal of industrial waste presents major logistical, financial and environmental issues. Technologies that can reduce the hazardous properties of wastes are urgently required. In the present work, a number of industrial wastes arising from the cement, metallurgical, paper, waste disposal and energy industries were treated with accelerated carbonation. In this process carbonation was effected by exposing the waste to pure carbon dioxide gas. The paper and cement wastes chemically combined with up to 25% by weight of gas. The reactivity of the wastes to carbon dioxide was controlled by their constituent minerals, and not by their elemental composition, as previously postulated. Similarly, microstructural alteration upon carbonation was primarily influenced by mineralogy. Many of the thermal wastes tested were classified as hazardous, based upon regulated metal content and pH. Treatment by accelerated carbonation reduced the leaching of certain metals, aiding the disposal of many as stable non-reactive wastes. Significant volumes of carbon dioxide were sequestrated into the accelerated carbonated treated wastes.  相似文献   

20.
The ASTM D5210-91 protocol for evaluating the biodegradability of a polymer was examined. The reactor design was modified not only to account for the total CO2 evolved but also to allow for the simultaneous carbon assessment in microbes, soluble products, and solid samples. Improvements in the test procedure were implemented such as (1) refining the CO2 pretrap and posttrap design, (2) optimizing the carbon dioxide removal efficiency, (3) accounting for the total polymeric carbon, (4) standardizing the inoculum, and (5) revising the nutrient medium. By growing the sludge on a suitable substrate prior to polymeric exposure, a constant microbial density was obtained. The modified ASTM method provides an assessment of the polymeric carbon degradation at any given time. The results of this work have specific significance to the behavior of polymers in a sewage waste treatment plant, where sludge is continuously being acrated, and also for aerobic biodegradation in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号