首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The State of México, situated in central México, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ("El Socavón") does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ("El Socavón").  相似文献   

2.
Assessment of long-term leaching from MSWI air-pollution-control (APC) residues is discussed with respect to use in environmental impact assessment, such as life-cycle assessment (LCA). A method was proposed for estimating leaching as a function of the liquid-to-solid (L/S) ratio in a long-term perspective (L/S 5000l/kg). Data for changes in residue pH as a function of L/S was used in combination with pH dependent leaching data to predict leachate concentrations of Al, Ca, Cd, Ba, Mg, Ni, Pb, S, Pb, V and Zn as a function of L/S. Mass balance calculations were used to determine the element fractions leached with respect to L/S. The estimated long-term leaching from a semi-dry residue and a fly ash was compared with short-term leaching determined by batch tests at L/S 10l/kg, both carbonated and non-carbonated versions of the residues were investigated. Generally, very high L/S ratios above 2000l/kg were required to leach 20-30% of the solid contents. However, Ca and S were depleted at L/S 200-900l/kg. The long-term leachate concentrations were found to either remain at the same level as the initial leaching determined by the L/S 10 batch test, or to significantly decrease compared with the initial leaching. Only Al and Zn were found to show higher leachate concentrations at L/S ratios above 3000-5000l/kg. Carbonation generally prolonged the time needed for depletion from the solid residues; however, Ca and S were depleted faster than in the case of non-carbonated residues. This study shows that uncritical use of batch leaching data for assessing the potential leaching is highly problematic, and evaluations of residue disposal should include scenario specific quantification of the long-term leaching.  相似文献   

3.
Environmental assessment of residue disposal needs to account for long-term changes in leaching conditions. Leaching of heavy metals from incineration residues are highly affected by the leachate pH; the overall environmental consequences of disposing of these residues are therefore greatly influenced by changes in pH over time. The paper presents an approach for assessing pH changes in leachate from municipal solid waste incineration (MSWI) air-pollution-control (APC) residues. Residue samples were subjected to a stepwise batch extraction method in order to obtain residue samples at a range of pH values (similar to common pH-dependence tests), and then on these samples to determine leaching of alkalinity as well as remaining solid phase alkalinity. On a range of APC residues covering various pretreatment and disposal options, this procedure was used to determine leachable and residual alkalinity as a function of pH. Mass balance calculations for typical disposal scenarios were used to provide data on pH as a function of the liquid-to-solid (L/S) ratio in the leaching system. Regardless of residue type and pretreatment, pH was found to stay above 7 for L/S ratios up to about 2000 L kg(-1) corresponding to about 100,000 years in typical landfill scenarios. It was found that pH changes were mainly governed by alkalinity decreases from leaching processes rather than neutralization reactions. The results suggest that leaching testing for assessment purposes should be carried out in the alkaline range, for example, at pH 9. The paper offers a thorough basis for further modelling of incineration residue leaching and for modelling the environmental consequences of landfilling and utilization of these residues.  相似文献   

4.
The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.  相似文献   

5.
Upgrading a crude dump site into a sanitary landfill is a very challenging task; Matuail landfill site in Dhaka posed just such a challenge. From the very beginning, the existing disposal site had been used for the crude dumping of solid wastes. All types of solid wastes were haphazardly disposed of all over the site. The existing drainage channels of the dumping ground were not operational due to blockage by indiscriminate waste dumping. A large amount of leachate oozing out from the waste mixed with storm water and made the site esthetically very displeasing and environmentally unsound. This adverse situation sometimes caused disruption of the waste vehicular movement. Step-by-step improvement measures have been taken in the open dump to make it controlled and sanitary by adopting simple and locally available materials, technical guidelines, and construction techniques.  相似文献   

6.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

7.
This study investigated the electrochemical oxidation of stabilized leachate from Pulau Burung semi-aerobic sanitary landfill by conducting laboratory experiments with sodium sulfate Na2SO4 (as electrolyte) and graphite carbon electrodes. The control parameters were influent COD, current density and reaction time, while the responses were BOD removal, COD removal, BOD:COD ratio, color and pH. Na2SO4 concentration was 1 g/L. Experiments were conducted based on a three-level factorial design and response surface methodology (RSM) was used to analyze the results. The optimum conditions were obtained as 1414 mg/L influent COD concentration, 79.9 mA/cm2 current density and 4 h reaction time. This resulted in 70% BOD removal, 68% COD removal, 84% color removal, 0.04 BOD/COD ratio and 9.1 pH. Electrochemical treatment using graphite carbon electrode was found to be effective in BOD, COD and color removal but was not effective in increasing the BOD/COD ratio or enhancing biodegradability of the leachate. The color intensity of the treated samples increased at low influent COD and high current density due to corrosion of electrode material.  相似文献   

8.
Sediment dredge disposal options were reviewed to improve cost‐effectiveness and environmental safety for dredging of coastal sediments at the Department of Fisheries and Oceans Small Craft Harbours (DFO‐SCH) program in Canada. Historically, contaminated dredge sediments exceeding federal guidelines were disposed of in nearby landfills. Recent federal regulatory changes in sediment quality guidelines adopted by provincial regulators in Canada has resulted in updates to guidelines for disposal of contaminated solids in landfills. Updates now require specific and general disposal options for contaminated dredge material destined for land‐based disposal, resulting in more expensive disposal in containment cells (if contaminated sediments exceed federal guidelines). However, as part of this study, a leachate testing method was applied to contaminated sediments to simulate migration of potential contaminants in groundwater. Using this approach, leachate quality was compared to federal freshwater criteria and drinking water quality guidelines for compliance with new regulations. Leachate testing performed on the highest sediment contaminant concentrations triggered less than 2 percent potable water exceedances, meaning that most dredge spoils could be disposed of in privately owned or provincially operated landfill sites, providing less expensive disposal options compared to containment cell disposal. Current dredge disposal practices were reviewed at 35 harbor sites across Nova Scotia and their limitations identified in a gap analysis. Improved site management was developed following this review and consultation with interested marine stakeholders. New disposal options and chemical analyses were proposed, along with improvements to cost efficiencies for management of dredged marine sediments in Atlantic Canada. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
AV Miljø is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH4) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed that the gas generated in the cell with mixed combustible waste consisted of mainly CH4 (70%) and carbon dioxide (CO2) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH4 (27%) and nitrogen (N2) (71%), containing no CO2. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH4 mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH4 generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH4 emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH4 emission from the disposal site was found to be 820 ± 202 kg CH4 d−1. The total emission rate through the leachate collection system at AV Miljø was found to be 211 kg CH4 d−1. This showed that approximately ¼ of the emitted gas was emitted through the leachate collections system making the leachate collection system an important source controlling the overall gas migration from the site. The emission pathway for the remaining part of the gas was more uncertain, but emission from open cells where waste is being disposed of or being excavated for incineration, or from horizontal leachate drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely.  相似文献   

10.
This article is intended to provide background information on leachate management in closed landfill sites based on a comparison of two landfill sites and the identification of leachate characteristics depending on the final cover and the season. Site S is older and has no final cover, while site J is younger and has final capping. The results of leachate analysis from the two landfills show that the biological oxygen demand to chemical oxygen demand ratio decreases below 0.1 to the range 0.05–0.07 for site S, whereas the ratio at site J was in the range 0.08–0.55. The inorganic nitrogen concentration was in the range 169.9–386.1 mg/l with an average of 265.2 mg/l at site S. Ammonia nitrogen accounted for 98.9% of the total nitrogen. The absence of a final cover on closed landfill sites may contribute to the stabilization of such landfills due to flushing. The nitrogen content at landfill S dropped in the summer, whereas it decreased in the fall at site J. A higher fluctuation in the pollutant levels of organic matters and nitrogen at the younger landfill site was observed, compared to the older site, even though the younger site had final capping. Therefore, intensive leachate management should be arranged at the early stages after closing for proper treatment. Specifically, nitrogen management of leachate is a critical factor in treatment operations.  相似文献   

11.
Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.  相似文献   

12.
Management of landfill emissions, i.e., landfill gas (LFG) and landfill leachate, is an important and resource-intensive task. A long-term demonstration pilot, consisting of landfill simulation reactors (LSRs), was used to study the impact of temperature and the applied liquid/solid ratio (L/S ratio) on landfill emissions, characteristics, and trends. This pilot has already run for more than 1000 days since the end of 2004 and will continue to run for some time. The degradation of waste at different temperatures has impacts on the overall degradation degree and on the length of post-closure care required. Higher temperatures accelerated the degradation, but also resulted in higher leachate chemical oxygen demand (COD) and ammonia concentrations, which prolong the aftercare period. Meanwhile, at a given stabilization degree [e.g., 70 l gas/kg waste (dry)], the total leached nitrogen under psychrophilic conditions was 3.5 times that under mesophilic/thermophilic conditions, which resulted in a higher required effort for leachate treatment. The impact of L/S ratio or simulated annual L/S rates was also evaluated. The results show the significance of efficiently obtaining the targeted L/S ratio in order to achieve low landfill emission potential.  相似文献   

13.
Municipal solid waste (MSW) landfills are potential long-term sources of emissions. Hence, they need to be managed after closure until they do not pose a threat to humans or the environment. The case study on the Breitenau MSW landfill was performed to evaluate future emission levels for this site and to illustrate the effect of final cover installation with respect to long-term environmental risks. The methodology was based on a comprehensive assessment of the state of the landfill and included analysis of monitoring data, investigations of landfilled waste, and an evaluation of containment systems. A model to estimate future emission levels was established and site-specific predictions of leachate emissions were presented based on scenario analysis. The results are used to evaluate the future pollution potential of the landfill and to compare different aftercare concepts in view of long-term emissions. As some leachable substances became available for water flow during cover construction due to a change in the water flow pattern of the waste, a substantial increase in leachate concentrations could be observed at the site (e.g. concentrations of chloride increased from 200 to 800 mg/l and of ammonia-nitrogen from 140 to about 500 mg/l). A period of intensive flushing before the final cover installation could have reduced the amount of leachable substances within the landfill body and rapidly decreased the leachate concentrations to 11 mg Cl/l and 79 mg NH4-N/l within 50 years. Contrarily, the minimization of water infiltration is associated with leachate concentrations in a high range for centuries (above 400 mg Cl/l and 200 mg NH4-N/l) with low concomitant annual emission loads (below 12 kg/year of Cl or 9 kg/year of NH4-N, respectively). However, an expected gradual decrease of barrier efficiency over time would be associated with higher emission loads of 50 kg of chloride and 30 kg of ammonia-nitrogen at the maximum, but a faster decrease of leachate concentration levels.  相似文献   

14.
With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH4 emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m?2 h?1) extremely higher than those of N2O (0.028–0.41 mg N m?2 h?1). In contrast, the emission values for both CH4 and N2O were low for the aged leachate tank. N2O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N2O emission based on both leachate treatment systems was estimated to be 7.99 g N2O–N capita?1 yr?1. An increase of 80% in N2O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO2, with a small portion as CH4 (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO2 eq yr?1, respectively, for a total that could be transformed to 9.09 kg CO2 eq capita?1 yr?1.  相似文献   

15.
Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L−1. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L−1 h−1) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.  相似文献   

16.
Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH3 and H2S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H2S (56.58-579.84 μg/m3) and NH3 (520-4460 μg/m3) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H2S and NH3 concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run.  相似文献   

17.
A probabilistic approach is presented for estimating the release of contaminants by leaching, when wastes are being considered for disposal in a class of landfills but the specific landfill disposal site is uncertain. A simple percolation and equilibrium-based release model is used in conjunction with laboratory testing results and observations of field leachate characteristics for municipal solid waste landfills, hazardous waste landfills and industrial co-disposal landfills. The approach is applied for assessing the efficacy of potential treatment processes for mercury contaminated soils. For each landfill scenario, historical values of leachate pH and annual leachate generation quantities were used to derive the probability distribution functions of the field pH and LS ratio that may be expected to contact the disposed material over an estimated time period of 100 years. For each potential treatment process, laboratory testing was used to establish the treated material's leaching characteristics as a function of pH LS ratio. This approach allowed determination of distribution frequencies and limit values for release estimates instead of single point estimates. The probability of the mass of a constituent of interest released exceeding a hypothetical threshold was examined for each treatment process and landfill system. Results of the probabilistic analysis allowed for integration of a range of data and provided a good basis for assessing the efficacy of the examined treatment processes over the three assumed disposal scenarios.  相似文献   

18.
As in all developing countries, cities in Tunisia face serious problems of environmental pollution caused mainly by the inadequate and inefficient final disposal of their generated solid wastes. The Tunisian government launched a development program including the construction of landfills in the main cities and the closure of the contaminated sites issued from solid wastes landrising practice. The project of the Henchir El Yahoudia landfill restoration is the first experience in this programme. It has been suggested to convert the site to a green park and to implement an ornamental plant nursery. The whole surface of the landfill is approximately 100 ha from which 30 ha have been already transformed to an urban recreational area and the remaining 70 ha have to be characterized for the project extension. A field investigation by boring was conducted in order to define the geological and the hydrogeological conditions, the vertical and horizontal wastes layer extension, content and degree of decomposition and the composition and quantities of leachate and landfill gas. Representative samples of waste, soil, groundwater and leachate were collected for laboratory analyses. Several of these borings were converted to piezometers to define the flow regime in the site. The results showed that the biogas (CH4, H2S, and CO2), leachate and waste, distribution in the site is mainly affected by the temporal variation of the site operating method. The underlying fissured clay layer facilitated leachate infiltration into the groundwater where high BOD, COD and nitrogen concentrations were registered.  相似文献   

19.
Gaseous emissions are an important problem in municipal solid waste (MSW) treatment plants. The sources points of emissions considered in the present work are: fresh compost, mature compost, landfill leaks and leachate ponds. Hydrogen sulphide, ammonia and volatile organic compounds (VOCs) were analysed in the emissions from these sources. Hydrogen sulphide and ammonia were important contributors to the total emission volume. Landfill leaks are significant source points of emissions of H2S; the average concentration of H2S in biogas from the landfill leaks is around 1700 ppmv. The fresh composting site was also an important contributor of H2S to the total emission volume; its concentration varied between 3.2 and 1.7 ppmv and a decrease with time was observed. The mature composting site showed a reduction of H2S concentration (<0.1 ppmv). Leachate pond showed a low concentration of H2S (in order of ppbv). Regarding NH3, composting sites and landfill leaks are notable source points of emissions (composting sites varied around 30–600 ppmv; biogas from landfill leaks varied from 160 to 640 ppmv).Regarding VOCs, the main compounds were: limonene, p-cymene, pinene, cyclohexane, reaching concentrations around 0.2–4.3 ppmv.H2S/NH3, limonene/p-cymene, limonene/cyclohexane ratios can be useful for analysing and identifying the emission sources.  相似文献   

20.
A combined process comprised of ex-situ nitrification in an aged refuse bioreactor (designated as A bioreactor) and in-situ denitrification in a fresh refuse bioreactor (designated as F bioreactor) was constructed for investigating N2O emission during the stabilization of municipal solid waste (MSW). The results showed that N2O concentration in the F bioreactor varied from undetectable to about 130 ppm, while it was much higher in the A bioreactor with the concentration varying from undetectable to about 900 ppm. The greatly differences of continuous monitoring of N2O emission after leachate cross recirculation in each period were primarily attributed to the stabilization degree of MSW. Moreover, the variation of N2O concentration was closely related to the leachate quality in both bioreactors and it was mainly affected by the COD and COD/TN ratio of leachate from the F bioreactor, as well as the DO, ORP, and NO3?-N of leachate from the A bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号