首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more valuable fuel gas. The operating temperatures for the pyrolysis and gasification were between 700° and 1000°C. The experimental parameters were the operating temperature, catalyst type, basic promoter type, and steam injection amount. Solid fuel samples (5 g) were fed into a semibatch-type quartz tube reactor when the reactor reached the designated temperature. The synthesis gas was analyzed by gas chromatography. The use of low-quality coal as fuel in co-pyrolysis with RPF was explored. For the co-pyrolysis of RPF and low-quality coal, the effectiveness of the catalysts for fuel gas production followed the order Mg > NiO > Ni. In catalytic gasification of RPF, the addition of Al2O3 seemed to reduce the activity of the corresponding catalysts Ni and Mg. The maximum fuel gas yield (92.6%) was attained when Mg/Fe2O3 was used in steam gasification at 1000°C.  相似文献   

2.
The purpose of this study was to establish a fuel process for an advanced power generation system in which hydrogen-rich synthesis gas, as the fuel for the molten carbonate fuel cell (MCFC), can be extracted from biomass via gasification and reforming technologies. Experiments on waste wood gasification were performed using a bench-scale gasification system. The main factors influencing hydrogen generation in the noncatalytic process and in the catalytic process were investigated, and temperature was identified as the most important factor. At 950°C, without employing a catalyst, hydrogen-rich synthesis gas containing about 54 vol% hydrogen was extracted from feedstock with appropriately designed operation parameters for the steam/carbon ratio and the equivalence ratio. However, by employing a commercial steam reforming catalyst in the reforming process, similar results were obtained at 750°C.  相似文献   

3.
Steady-state models for the prediction of P retention coefficient (R) in lakes were evaluated using data from 93 natural lakes and 119 reservoirs situated in the temperate zone. Most of the already existing models predicted R relatively successfully in lakes while it was seriously under-estimated in reservoirs. A statistical analysis indicated the main causes of differences in R between lakes and reservoirs: (a) distinct relationships between P sedimentation coefficient, depth, and water residence time; (b) existence of significant inflow–outflow P concentration gradients in reservoirs. Two new models of different complexity were developed for estimating R in reservoirs: , where τ is water residence time (year), was derived from the Vollenweider/Larsen and Mercier model by adding a calibrated parameter accounting for spatial P non-homogeneity in the water body, and is applicable for reservoirs but not lakes, and , where [Pin] is volume-weighted P concentration in all inputs to the water body (μg l−1), was obtained by re-calibrating the OECD general equation, and is generally applicable for both lakes and reservoirs. These optimised models yield unbiased estimates over a large range of reservoir types.  相似文献   

4.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   

5.
The long-term monitoring of precipitation and its chemical composition are important for identifying trends in rain quality and for assessing the effectiveness of pollution control strategies. A statistical test has been used to the atmospheric concentrations measured in the French rural monitoring network (MERA) in order to bring out spatio-temporal trends in precipitation quality in France over the period 1990–2003. The non-parametric Mann–Kendall test which has been developed for detecting and estimating monotonic trends in the time series was used and applied in our study at annual values of wet-only precipitation concentrations. The emission data suggest that SO2 and NO x emissions decreased (−3.3 and −2.0% year−1, respectively) contrary to NH3 emissions that increased slightly (+0.2% year−1) over the period 1990–2002 in France. On the national scale, the pH values have a significant decreasing trend of −0.025 ± 0.02 unit pH year−1. and concentrations in precipitation have a significant decreasing trend, −3.0 ± 1.6 and −3.3 ± 0.6% year−1, respectively, corresponding with the downward trends in SO2 emissions in France (−3.3% year−1). A good correlation (R 2 = 0.84) between SO2 emissions and concentrations was obtained. The decreasing trend of was more significant (−5.4 ± 5.2% year−1) than that of (−1.3 ± 2.4% year−1). Globally, the concentration of the major ions showed a clear downward trend including marine and alkaline ions. In addition, the relative contribution of HNO3 to acidity precipitation increased by 51% over the studied period.  相似文献   

6.
In this study, experimental conditions were optimized to maximize the production of hydrogen gas from refuse plastic fuel (RPF) by pyrolysis and steam gasification processes conducted in a laboratory-scale reactor. We carried out gasification using 10-g RPF samples at different temperatures (700°-1000°C) with and without steam. The effect of the amount of steam (0–0.25 g/min) for RPF steam gasification was also studied. The effect of K2CO3 as a catalyst on these processes was also investigated. Experimental results showed that the hydrogen gas yield increased with temperature; with respect to the gas composition, the hydrogen content increased mainly at the expense of other gaseous compounds, which highlights the major extension of secondary cracking reactions in the gaseous fraction at higher temperatures.  相似文献   

7.
A process of partial nitrification and denitrification in a sequencing batch reactor (SBR) treating leachate was simulated by applying a modified version of activated sludge model no. 3 (ASM3), named ASM3_2step. This model modifies the ASM3 model by separating nitrification and denitrification into two steps with nitrite as an intermediate substrate. Three periods, including long term period, steady state and cycle evolution, were used for calibration. Three main processes were observed, including biomass production, nitrification (focusing on nitrite accumulation) and denitrification. The kinetic and stoichiometric parameters ( m\textA_NH \mu_{{{\text{A\_NH}}}} , Y\textA_NH Y_{{{\text{A\_NH}}}} , Y\textA_\textNO2 Y_{{{\text{A}}\_{\text{NO}}_{2} }} , Y\textH_\textO2 Y_{{{\text{H}}\_{\text{O}}_{2} }} , b A, K\textA_NH K_{{{\text{A\_NH}}}} ), were determined from biokinetic and respirometry tests. Some of the default values of kinetic and stoichiometric parameters available in the ASM3 model and in the literature were kept constant, while some others were adjusted step by step until observed state variables fit with experimental data. The maximum specific growth rate of nitrite oxidizing bacteria (0.108 day−1) (simulated by the model) and that of ammonium oxidizing bacteria (0.61 day−1) (from biokinetic tests) are the parameters which have the highest influence on the nitrite accumulation, even more than oxygen supply intensity or Kla value. Other important parameters were K\textAO_NH K_{{{\text{AO\_NH}}}} and K\textAO_\textNO2 K_{{{\text{AO}}\_{\text{NO}}_{2} }} , calibrated at the values of 1.37 and 1.59 mg O2/L, respectively. The modified model and values of the kinetic and stoichiometric parameters obtained from the modeling process will be used for optimization of the partial nitrification in the next study.  相似文献   

8.
Nutrient spiralling measurements were conducted in Lyrebird Creek, a forested stream in the Dandenong Ranges, Victoria, Australia. Spiralling indices from several nutrient (, ) enrichment experiments were correlated with seasonal variation in factors thought to control nutrient uptake, i.e., temperature, light and algal biomass. It was hypothesized that nutrient uptake would be higher in summer as increased temperatures would promote both biotic and abiotic processes and higher light levels in summer would stimulate photosynthesis. However, results did not support this hypothesis. Uptake length for and and uptake velocity were not correlated with chlorophyll-a, light or temperature (r 2 < 0.30, P > 0.1) despite the seasonality of these biophysical factors (r 2 > 0.42, P < 0.02). Lyrebird Creek might had no seasonal trend in nutrient uptake and/or nutrient spiraling measurements only appears suitable for contrasting streams with large differences in biophysical factors that supports biotic and abiotic nutrient processing. In addition, small errors in measuring a nutrient concentration can result in a large range in the estimated S w and increased difficulty in determining significant differences in nutrient spiralling indices.  相似文献   

9.
When landfill gas is collected, air inflow into the landfill can reduce CH4 productivity. The decline of CH4 content in landfill gas (LFG) negatively affects energy projects. We studied air inflow rates and LFG characteristics from 699 vertical collection facilities (VCFs) in the 2nd landfill at the Sudokwon Landfill in South Korea. We first determined whether or not N2 was an effective indicator of air inflow at this site using argon assays. The results of this analysis showed that the denitrification processes could be disregarded and that N2 was an effective indicator of air inflow. Using the composition of N2 in LFG samples, we found that air inflow occurred at 73.6 % of the VCFs, and 25.6 % of samples from these facilities showed more than 80 vol% of air inflow. In addition, we observed that the O2 consumption rate was more than 70 % of the volume in all samples. $ R_{{{\text{CH}}_{ 4} }} $ , which is the ratio of CH4 to the sum of CH4 and CO2, decreased with increasing air inflow. Finally, we found that, as air inflow increased, the variation in $ R_{{{\text{CH}}_{ 4} }} $ values for samples with equal air inflow ratios also increased due to differences in air inflow routes.  相似文献   

10.
The work deals with catalytic gasification, pyrolysis and non-catalytic gasification of tar from an industrial dumping site. All experiments were carried out in a vertical stainless steel gasification reactor at 800 °C. Crushed calcined dolomite was used as the gasification catalyst. Parameters such as addition of water and air, and the influence of the catalyst in regard to the composition of the process gas were investigated. The catalytic gasification experiment in the steady state produced process gas with the composition: 56 % of H2, 9 % of CO, 11 % of CH4 and 12 % of CO2 (mol.%). Concentration of the C2 fraction was lower than 1 mol.%. Volume flow of air was later changed from 120 to 230 ml min?1 reducing the amount of hydrogen to 51 mol.% and that of methane to 10 mol.%. Process gas created in a non-catalytic gasification process contained 26–30 mol.% of methane, 13–15 mol.% of carbon monoxide and 15–17 mol.% of the C2 fraction and lower amounts of hydrogen (20 mol.%) and carbon dioxide (2–3 mol.%). The highest apparent conversion of tar was reached in the catalytic gasification processes. A higher rate of catalyst deactivation can be observed when water or air is not added.  相似文献   

11.
The consequences of nitrogen (N) enrichment for terrestrial and freshwater ecosystems are of increasing concern in many areas due to continued or increasing high emission rates of reactive N. Within terrestrial ecosystems various conceptual frameworks and modelling approaches have been developed which have enhanced our understanding of the sequence of changes associated with increased N availability and help us predict their future impacts. Here, some recent findings are described and their implications for these conceptual frameworks and modelling approaches discussed. They are: (a) an early loss of plant species that are characteristic of low N conditions as N availability increases and a loss of species with high N retention efficiencies (so called N ‘filters’), (b) suppression of microbial immobilisation of deposited due to increased availability in the early stages of N saturation, (c) the early onset of leaching due to these changes (a and b above) in both plant and microbial functioning, (d) reduced sensitivity of vegetation to N additions in areas with high historical N deposition, (e) delayed changes in soil C:N changes due to increased net primary productivity and reduced decomposition of soil organic matter. Some suggestions of early indicators of N saturation are suggested (occurrence of mosses; ratio in surface soils) which indicate either a shift in ecosystem function and/or structure.  相似文献   

12.
This article describes the gasification of polyethylene–wood mixtures to form syngas (H2 and CO) with the aim of feedstock recycling via direct fermentation of syngas to ethanol. The aim was to determine the effects of four process parameters on process properties that give insight into the efficiency of gasification in general, and particularly into the optimum gasification conditions for the production of ethanol by fermentation of producer gas. Gasification experiments (fluidized bed, 800°–950°C) were done under different conditions to optimize the composition of syngas suitable for fermentation purposes. The data obtained were used for statistical analysis and modeling. In this way, the effect of each parameter on the process properties was determined and the model was used to predict the optimum gasification conditions. The parameters varied during the experiment were gasification temperature, equivalence ratio, the ratio of plastic to wood in the feed, and the amount of steam added to the process. The response models obtained proved to be statistically significant in the experimental domain. The optimum gasification conditions for maximization of carbon monoxide and hydrogen production were identified. The conditions are: temperature 900°C, equivalence ratio 0.15, amount of plastic in the feed 0.11 g/g feed, and amount of steam added 0.42 g/g feed. These optimum conditions are at the edge of the present experimental domain. The maximum combined CO and H2 efficiency was 42%, and for the maximum yield of CO and H2 it is necessary to minimize the polyethylene content, minimize the added steam and the equivalence ratio, and maximize temperature.  相似文献   

13.
Nano-ZnO-chitosan bio-composite beads were prepared for the sorption of \({\text{UO}}_{2}^{{2+}}\) from aqueous media. The resulting nano-ZnO/CTS bio-composite beads were characterized by TEM, XRD etc. The sorption of \({\text{UO}}_{2}^{{2+}}\) by bio-composite beads was optimized using RSM. The correlation between four variables was modelled and studied. According to RSM data, correlation coefficients (R2?=?0.99) and probability F-values (F?=?2.24?×?10??10) show that the model fits the experimental data well. Adsorption capacity for nano-ZnO/CTS bio-composite beads was obtained at 148.7 mg/g under optimum conditions. The results indicate that nano-ZnO/CTS bio-composite beads are appropriate for the adsorption of \({\text{UO}}_{2}^{{2+}}\) ions from aqueous media. Also, the suitability of adsorption values to adsorption isotherms was researched and thermodynamic data were calculated.  相似文献   

14.
Aerosol particles in the workplace of a detergent industry were sampled during July 2005 by a Berner low-pressure impactor. The samples were analyzed by atomic absorption spectrometry and ion chromatography in order to determine the size distribution of metallic elements and water-soluble inorganic ions. The size distributions of some characteristic metallic elements (Cu, Fe, Al) were unimodal with their maximum found in coarse particles. Among the water-soluble aerosol components , , Cl, and Ca++ were the major contributors to total particle mass. The lung deposition resulting from the partially hygroscopic aerosol is estimated. The calculated lung deposition reveals the impact of separate chemical aerosol compounds on the levels of the inhaled dose. The differences observed between the total and regional deposition of the different compounds appear mainly due to their different size distributions. An erratum to this article can be found at  相似文献   

15.
Sewage sludge, a byproduct of municipal wastewater treatment, was gasified by supercritical water using a bench-scale batch reactor. Configuration of bench-scale batch reactor and operation procedures are discussed in detail. Experience and challenges that arose during the experiment are also shared. Using the bench-scale reactor under the condition of 600 °C, 23 MPa, and a reaction time of 60 min without catalyst presence, a total gas yield of 9.8 mol/(kg-sewage sludge) was obtained. Furthermore, investigations on operational parameters were conducted. Extension of reaction time up to 60 min increased the gasification, reaching a plateau thereafter. Investigation on pressure indicated the superiority of supercritical pressure. The addition of Ni as a catalyst also promoted gasification, although inorganic salts and char seemed to cover the catalyst surface. With regard to the prospect of future operation at a municipal waste water treatment plant, the effect of operational parameters on heavy metal concentration in the liquid phase is also discussed.  相似文献   

16.
A continuous system (feeding rate >1 kg/h) consisting of thermal dechlorination pre-treatment and catalytic pyrolysis with Fe-restructured clay (Fe-RC) catalyst was developed for feedstock recycling of PVC-containing mixed plastic waste. The vented screw conveyor which was specially designed for continuous dechlorination was able to achieve dechlorination efficiency of over 90 % with a feedstock retention time longer than 35.5 min. The chlorine content of the pyrolytic oil obtained after dechlorination was in the range of 6.08–39.50 ppm, which meet the specification for reclamation pyrolytic oil in Japan. Fe-RC was found to significantly improve the yield of pyrolytic oil (achieved to 83.73 wt%) at the optimized pyrolysis temperature of 450 °C and catalyst dosage of 60 g. With the optimized parameters, Fe-RC showed high selectivity for the C9–C12 and C13–C19 oil fraction, which are the major constituents of kerosene and diesel fuel, demonstrating that this catalyst can be applied in the pyrolysis of mixed plastic wastes for the production of kerosene and diesel fuel. Overall, the continuous process exhibited high stability and consistently high-oil yield upon reaching steady state, indicating its potential up-scaling application in the industry.  相似文献   

17.
The gas products from gasification processes have been considered to have some limitations in gas composition and heating value from the previous studies. Gasification characteristics of sewage sludge and wood mixture were investigated using different mixing ratios with the purpose of better quality of gas product suitable for energy/power generation. The gasification experiment was performed by an indirectly heated fluidized bed reactor. As reaction temperature increased from 600 to 900 °C, the yield of gas product increased with higher generation of CO, H2 and CH4 by more activated gas conversion reactions. As the equivalence ratio increased from 0.2 to 0.4, composition ratio of CO2 increased while CO, CH4, H2 decreased as expected. Several operating variables including mixing ratio of wood with dried sludge were also tested. From this initial stage of experiment, optimal operating conditions for the bubbling fluidized bed gasifier, could be considered 900 °C in temperature; 0.2 in equivalence ratio and 40 % in wood mixing ratio within test variables range. These results will be more thoroughly investigated for the application to the larger scale pilot system.  相似文献   

18.
In response to reduced sulphur emissions, there has been a large decrease in sulphate (; −0.97 μeq l−1 year−1) and hydrogen (−1.18 μeq l−1 year−1) ion concentration in bulk precipitation between 1980 and 2000 at Plastic Lake in central Ontario. The benefit of this large reduction in deposition on stream water chemistry was assessed using the gauged outflow from a conifer-forested catchment (PC1; 23.3 ha), which is influenced by a small wetland located immediately upstream of the outflow. Sulphate concentrations declined, but not significantly due to large inter-annual variation in concentration. Between 1980 and 2000, there were significant increases in dissolved organic carbon, ammonium and potassium concentration likely reflecting increased mineralisation in the wetland. Calcium concentrations in PC1 decreased during the two decade period (−2.24 μeq l−1 year−1), as a consequence there was no improvement in stream pH and the Ca:Al ratio in PC1 continued to decline. A similar response was noted in an upland-draining sub-catchment of PC1-08 that has been monitored since 1987. Despite large reductions in deposition and almost complete retention of nitrogen in soil, there has been no improvement (in terms of pH) in stream water at PC1 due to a combination of soil acidification and climatic (droughts, increased mineralisation) perturbations.  相似文献   

19.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

20.
Since 1983, the Ministry of the Environment of Japan has conducted nation-wide acid deposition surveys. To investigate the effects of acid deposition on surface water, we used the nonparametric Mann–Kendall test to find temporal trends in pH, alkalinity, and electrical conductivity (EC) in more than 10 years of data collected from five lakes and their catchments (Lake Kuttara: northernmost; Lake Kamakita: near Tokyo; Lake Ijira: central; Lake Banryu: western; and Lake Unagiike: southernmost). The pH of Lake Ijira water has declined slightly since the mid-1990s, corresponding with the downward trends seen in the pH and alkalinity of the river water flowing into the lake. There were significant upward trends in the EC of both the lake and stream water; the same trends were also found for concentrations. These trends show evidence of acidification due to atmospheric deposition, and this is the first such finding in Japan based on significant long-term trends. Lake Ijira is located about 40 km north of the Chukyo industrial area near Nagoya. The annual depositions of H+, nss-, and in Lake Ijira were among the highest of all deposition monitoring sites, suggesting that this is the main cause of the significant acidification observed in Lake Ijira. No significant trends suggesting acidification were observed in any of the other lake catchments in spite of the significant upward trends in EC. Upward trends in pH and alkalinity at Lake Banryu and upward trends in alkalinity at Lake Kamakita were detected, but no change in pH or alkalinity at Lake Kuttara and Lake Unagiike was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号