首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to statistically evaluate the influence of various sampling methodologies and flow conditions on the quality and comparability of total phosphorus concentration data collected over the course of 27 months at the South Florida Water Management District (SFWMD) S-65E structure. The data was obtained from the following sampling methodologies: U.S. Geological Survey (USGS) (Reston, Virginia) equal width increment spatially composite grab samples, USGS replicate samples, SFWMD grab samples, and SFWMD autosampler samples. Both significant and insignificant differences were reported from these comparisons. Parametric and nonparametric standard statistical tests for significance were carried out to evaluate the differences between the data. To avoid invalid conclusions of insignificant differences, we conducted tests for equivalence of the means and variances. The results from the data analysis revealed that both flow conditions and sampling methodology affected the water quality data.  相似文献   

2.
Monitoring of iodinated X-ray contrast media in surface water   总被引:1,自引:0,他引:1  
Seitz W  Weber WH  Jiang JQ  Lloyd BJ  Maier M  Maier D  Schulz W 《Chemosphere》2006,64(8):1318-1324
A monitoring programme was carried out in order to determine iodinated X-ray contrast media (ICM) in the River Danube and to investigate the raw water quality for drinking water production at Langenau waterworks. The study revealed that the maximum concentrations of ICM (over 500 ng l(-1) for diatrizoic acid and iopamidol) were found in 2h-composite samples taken from the downstream of the Ulm/Neu-Ulm metropolitan area. By means of a concentration profile over one month the highest ICM concentrations were observed on weekdays. The extended data evaluation with principal component analysis shows that the upstream and downstream samples had different pattern of variations in ICM concentration and also demonstrates a clear change in ICM composition by the discharge of municipal wastewater. In addition to load profiles of ICM, time-dependent plots of principal component 1 exhibited peaks, indicating a short-term discharge of ICM between the two sampling sites. In conclusion, a point source for ICM contamination between the sampling sites in Ulm upstream and Leipheim downstream seems to be the reasonable explanation for peak ICM concentrations. Due to the observed high variations of ICM concentrations in river, the evaluation of natural waters by means of a single analysis is not representative.  相似文献   

3.
A new methodology is described for determining the atmospheric emission rate of pollutants from large heterogeneous area sources, such as hazardous waste sites. The procedure hinges upon measuring average pollutant concentrations, at three or more different elevations, while traversing the plume downwind of the area source. A helium-filled tethersonde balloon is used to elevate the sampling lines to their appropriate height. During plume traversing the sampling rate is adjusted to be proportional to the sine of the angle between the wind vector and the direction of the traverse path. The average concentrations are corrected for any upwind, background concentration and then used to derive an average vertical concentration profile. This profile Is numerically integrated, with the wind velocity profile, over the pollutant boundary layer to yield the area source emission rate. The methodology was tested on several large industrial effluent lagoons and proved to be easy to use, robust, and precise.  相似文献   

4.
Fluoride emission rates from the manufacture of phosphoric acid, run-of-pile triple super-phosphate, diammonium phosphate, and granular triple super-phosphate are presented in tabular form. In discussing the information, variations to the usual arrangements and operating practices are mentioned. Fluoride emissions from the manufacturing or producing of related phosphatic products such as defluorinated and calcined phosphate rock, normal super-phosphate, super-phosphoric acid and elemental phosphorus are also discussed. The information is based entirely upon the fertilizer and related phosphate products manufactured in Polk and Hillsborough Counties in Florida. This area produces 75% of the marketable phosphate rock in the United States. Some 40% of the rock remains in these two counties for chemical or thermal processing. The phosphate industry is required to report on fluoride emission levels found by their sampling and monitoring programs. These values are compared with those found by the Florida State Board of Health’s source sampling and monitoring program.  相似文献   

5.
Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.  相似文献   

6.
Discrete-depth sampling of inorganic groundwater chemistry is essential for a variety of site characterization activities. Although the mobility and rapid sampling capabilities of direct-push techniques have led to their widespread use for evaluating the distribution of organic contaminants, complementary methods for the characterization of spatial variations in geochemical conditions have not been developed. In this study, a direct-push-based approach for high-resolution inorganic chemical profiling was developed at a site where sharp chemical contrasts and iron-reducing conditions had previously been observed. Existing multilevel samplers (MLSs) that span a fining-upward alluvial sequence were used for comparison with the direct-push profiling. Chemical profiles obtained with a conventional direct-push exposed-screen sampler differed from those obtained with an adjacent MLS because of sampler reactivity and mixing with water from previous sampling levels. The sampler was modified by replacing steel sampling components with stainless-steel and heat-treated parts, and adding an adapter that prevents mixing. Profiles obtained with the modified approach were in excellent agreement with those obtained from an adjacent MLS for all constituents and parameters monitored (Cl, NO(3), Fe, Mn, DO, ORP, specific conductance and pH). Interpretations of site redox conditions based on field-measured parameters were supported by laboratory analysis of dissolved Fe. The discrete-depth capability of this approach allows inorganic chemical variations to be described at a level of detail that has rarely been possible. When combined with the mobility afforded by direct-push rigs and on-site methods of chemical analysis, the new approach is well suited for a variety of interactive site-characterization endeavors.  相似文献   

7.
The development and application of an analytical methodology for the pretreatment and determination of 253 multiclass pesticides, in lake sediment samples, using liquid chromatography coupled with mass spectrometry (LC-MS/MS) are described in this work. Sediments of lakes Volvi, Doirani, and Kerkini, located in northern Greece, were collected in two-time periods (fall/winter 2010 and spring/summer 2011) and analyzed, applying the developed analytical methodology. Microwave-assisted extraction (MAE) was applied to extract the pesticide residues from lake sediment samples. Analytical results were stored, categorized, and visualized using geographical information systems, in order to assess and observe spatial and temporal variations of the pollution. Main pesticides that were detected included the following: amitrole, tebuconazole, phoxim, diniconazole, sethoxydim, temephos, tetrachlorvinphos, pendimethalin, boscalid, disulfoton sulfone, lenacil, propiconazole, cycloxydim, pyridaben, and terbuthylazine. Amitrole, diniconazole, and tebuconazole were found to be common in all three lakes. Lakes Kerkini and Doirani exhibited increased concentrations during the first sampling period (winter 2010) with predominant pesticide classes, triazines/triazoles and organophosphates. Pollution is mainly located near the populated villages of the lakes and the nearby cultivations. During the second sampling period, pesticide concentrations appear lower and located in sediments near the center of the lake. Lake Volvi exhibits increased pesticide concentrations during the second sampling period, temporal and spatial variations and different pesticide profile pattern. Increased pollution occurs near the center of the lake during the first sampling period, mainly comprised by triazines/triazoles and organophosphates. During the second sampling period, the majority of the sediment samples demonstrated a different pesticide profile dominated by unclassified pesticides and triazines/triazoles. Mineralogical analysis of the samples demonstrates that sediments are mainly composed of clay, mud, and sand particles, and they present spatial variations. Near the center of the lakes, sediments appear to be more fine-grained with higher clay content and are more likely to adsorb pesticides.  相似文献   

8.
Wet deposition of phosphorus was measured at 10 sites across Florida originally established as part of the Florida Atmospheric Mercury Study conducted between 1992 and 1996. Monthly integrated samples were collected and analyzed using a total analytical protocol that incorporated “clean lab” conditions for sample equipment preparation and Aerochem Metrics collectors modified for suitability to use for ultra-trace elements. Samples also were collected aboard 15 m towers to minimize any influence on measured deposition by insects, etc., and locally originating particles that do not contribute to true net deposition. Extensive replication of samples in the field was conducted (ca. 83%). The average absolute difference between replicates was 16.2%, with a median absolute difference of 9.5%. Replicate precision was poorest for concentrations above 0.080 mg P l−1, suggesting that concentrations above this level are contaminated.The wet deposition concentrations and fluxes of phosphorus measured in this study are appreciably lower than those reported by previous investigators for wet deposition in Florida, and lie at the lower end of measurements reported in the recent literature. For example, the volume weighted mean concentration and flux for wet deposition across all our study sites averaged 0.005 mg P l−1 and 7.5 mg P m−2 yr−1, respectively, which is approximately 50% and 32% lower than that reported by Hendry et al. (1981 in Atmospheric Pollutants in Natural Waters. Ann Arbor Science, Ann Arbor. MI, pp. 199–215). Our lower measurements likely reflect three factors: (1) the ultra-trace element sampling and analytical protocols; (2) improved collector design to eliminate sampling artifacts (e.g., splash-off contamination and transfer of contaminants from the dry bucket); and (3) placement of collectors off the ground surface. Lower VWM concentrations were observed near the Florida coast; otherwise, strong spatial patterns across the state were absent. Seasonal variations in VWM also were not pronounced, although deposition fluxes were highest during the summer wet season in response to the strong seasonal distribution of rainfall.  相似文献   

9.
Liang Y  Wong MH 《Chemosphere》2003,52(9):1647-1658
An intensive monthly sampling of water and sediments from 12 sites over 8 months covering wet and dry seasons at Mai Po Marshes Nature Reserve was conducted during June 1997-February 1998. Major organic (C, N and P) and heavy metal pollutants (Cd, Cr, Cu, Ni, Pb, Zn) water and sediment samples were examined. The results showed that Mai Po Marshes were severely polluted by organic matter and heavy metals, and the water from Deep Bay appeared to be the source of pollution. Up to 13-55% chance that the sediments of Mai Po Marshes were classified as moderately to seriously metal contaminated materials, according to the guideline set by Hong Kong Government. Empirical models describing organic matter and heavy metal spatial and seasonal dynamics in the water and sediments were formulated, based on data analysis. During wet season (June-October), more than 58% variations of total P can be explained by ortho-P in water, while ammonia-N explained up to 90% variations of total Kjeldahl nitrogen in water. Throughout the whole sampling period (June-February), there were significant correlations (p<0.01) between total organic C in water. pH in the sediments and salinity in water appeared to be important factors determining heavy metal mobility in sediments, while potential metal release from the sediments is a concern when any oxidizing processes such as flooding or dredging are imposed on sediments.  相似文献   

10.
The body of information presented in this paper is directed to the operating personnel and process engineers employed in the power and recovery departments of a chemical pulping operation. The proper evaluation of the total analytical and sampling system (TASS), to be used in the determination of sulfur oxides is as important as a proper analytical and recording system (ARS). The presence of other sulfur gaseous compounds and particulates could greatly influence the results of the determination.

The analytical method employed determines sulfur dioxide and trioxide from an aliquot of the trapping solution, 3% hydrogen peroxide and 8 0% isopropyl alcohol respectively. The aliquot is titrated with barium perchlorate in the presence of Thorin indicator. The results of evaluating the method indicated negligible interference from the presence of hydrogen sulfide, mercaptans and nitrogen oxides. A blank correction of 15 parts per million (ppm) is recommended whenever 100 ppm of hydrogen sulfide or more are simultaneously present in the gas stream. Particulaies are shown to interfere either by addition or subtraction. Sulfate particulates that will add to the determination must be removed, but in doing so, care must be exerted to avoid surface-contacting conditions that promote reaction between carbonates and the sulfur oxides. The integrated method of sampling and analysis will permit determinations from a flue gas with sulfur oxides concentrations of 30 ppm and above. The relative standard deviation improves from 10% at 100 ppm SO2 to 2.6% at 1000 ppm SO2. In both cases, sulfides were present.  相似文献   

11.
When river water quality fluctuates over relatively short periods of time with respect to the sampling frequency, the collection of grab samples may be inappropriate for characterising average water quality. This paper presents the results of a water quality monitoring study carried out on a stretch of the river Lambro (northern Italy) dominated by a periodically overloaded sewage treatment works (STW) located near its upstream end. Water quality was strongly influenced by a pronounced diurnal cycle in pollutant loads caused by the regular emission of untreated waste water during periods of high domestic flow (daytime). Two different sampling techniques were employed: grab sampling and 24-h composite sampling using automatic samplers. Samples were collected at the plant overflow and at several sites along the river and analysed for two common ingredients of household detergents, linear alkylbenzene sulphonate (LAS) and boron (B) and for routine water quality variables. The results obtained show that: (1) The diurnal variability of point-source-derived chemical concentrations in the river downstream of the undersized STW increased with increasing removal efficiency in sewage treatment. (2) The shape of the diurnal concentration signal remained relatively intact for a considerable distance downstream of the STW for several water quality variables, suggesting that hydrodynamic dispersion plays a relatively minor role in controlling concentration patterns in this river. (3) In-stream degradation of LAS was consistent with first order kinetics with a rate constant of 0.05-0.06 h(-1). (4) Grab sampling is a relatively inefficient methodology for capturing mean concentrations for rivers subjected to highly variable loads, especially when it is restricted to office hours. The inefficiency of grab sampling is more marked for substances (e.g. LAS) which are effectively removed during sewage treatment than for substances which are not. (5) For LAS, diurnal variability in the concentration signal decreases with distance downstream, making grab sampling an increasingly reliable methodology for estimating mean concentrations. (6) 24-h composite sampling is an efficient way of eliminating the effect of diurnal variations in load strength.  相似文献   

12.
Elevated nitrate concentrations within a municipal water supply aquifer led to pilot testing of a field-scale, in situ denitrification technology based on carbon substrate injections. In advance of the pilot test, detailed characterization of the site was undertaken. The aquifer consisted of complex, discontinuous and interstratified silt, sand and gravel units, similar to other well studied aquifers of glaciofluvial origin, 15-40 m deep. Laboratory and field tests, including a conservative tracer test, a pumping test, a borehole flowmeter test, grain-size analysis of drill cuttings and core material, and permeameter testing performed on core samples, were performed on the most productive depth range (27-40 m), and the results were compared. The velocity profiles derived from the tracer tests served as the basis for comparison with other methods. The spatial variation in K, based on grain-size analysis, using the Hazen method, were poorly correlated with the breakthrough data. Trends in relative hydraulic conductivity (K/K(avg)) from permeameter testing compared somewhat better. However, the trends in transient drawdown with depth, measured in multilevel sampling points, corresponded particularly well with those of solute mass flux. Estimates of absolute K, based on standard pumping test analysis of the multilevel drawdown data, were inversely correlated with the tracer test data. The inverse nature of the correlation was attributed to assumptions in the transient drawdown packages that were inconsistent with the variable diffusivities encountered at the scale of the measurements. Collectively, the data showed that despite a relatively low variability in K within the aquifer under study (within a factor of 3), water and solute mass fluxes were concentrated in discrete intervals that could be targeted for later bioremediation.  相似文献   

13.

Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.

  相似文献   

14.
In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

15.
The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus providing guidelines in performing this technology on site.  相似文献   

16.
Abstract

In recent years, the utility industry has turned to bag-houses as an alternative technology for particulate emission control from pulverized-coal–fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

17.
It is a great challenge to sample seawater across interfaces, for example the halocline or the redoxcline, to investigate trace metal distribution. With the use of 10l sampling bottles mounted to a wire or a CTD-Rosette it is possible to obtain a maximum vertical resolution of 5m. For the detection of small vertical structures in the vertical distribution of trace metals across the redoxcline, the CTD-Bottle-Rosette is not sufficient. Therefore, a PUMP-CTD-System was developed, which enables water sampling with high resolution (1m maximum) along a vertical profile. To investigate the suitability and possible contamination sources of this device two experiments were carried out in the Gotland Basin. The first experiment consisted of two separate profiles. The first profile was obtained with the CTD-Bottle-Rosette and the second with the PUMP-CTD-System. Both were taken from the bottom to the surface water layer. The second experiment was a combined profile obtained from the surface to the bottom with the PUMP-CTD-System attached to the CTD-Bottle-Rosette. Concentrations of dissolved Pb, Cd, Cu, Zn, Fe, Mn, Co and Ni from the "Niskin Bottles" and from the PUMP were measured and compared for each investigation. We demonstrate that it is useful to perform vertical sampling from lower to higher concentrations, e.g. surface to bottom in this environment, and that a longer flushing is required for sampling seawater in the anoxic bottom water. A comparison of the two systems for oxygen and hydrogen sulphide measurements showed an improvement of the precision and the quality of the sampling when using the PUMP. Thus, metal speciation at the oxic-anoxic gradient zone and on a high vertical resolution will be accessible. As concentrations of dissolved Pb, Cd, Cu, Zn, Co, Ni, Fe and Mn in seawater sampled with both devices were in the same range, we conclude that the PUMP-CTD-System is well suited to sample seawater for trace metal analyses.  相似文献   

18.
Despite the great importance that formaldehyde has in atmospheric photochemistry, few studies have been reported on rain water. In this paper, concentrations of HCHO in rain fractions within rain events are presented. Two sampling sites were chosen: one at Mexico City, a great polluted urban area, and the second at Rancho Viejo, a forested area under the meteorological influence of the city. The results show a general decrease during the early portion of the rain event. This seems to indicate that below-cloud scavenging is the most important mechanism while, from the small variations observed in the latter portion of the rainfall, it is possible to assume within-cloud scavenging as the predominant mechanism. Using the HCHO concentrations in rain water, the mixing ratios were estimated for the two sampling sites. The values were 0.68 ppb and 0.44 ppb at Mexico City and Rancho Viejo, respectively. Measurements at ground level in Mexico City gave a mean HCHO concentration in air of 24 ppb, much higher than the estimated mixing ratio. The high levels of HCHO found in ambient air and in rain water reflect anthropogenic emissions as the potential atmospheric sources.  相似文献   

19.
Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).  相似文献   

20.
The mean velocity in circular ducts is often determined by a traverse in which the cross section of the pipe is divided into equal annular areas and a center circle, and the velocity determined at some point within each. This process can be improved by integration (quadrature) procedures that either optimize the spacing of the sampling points and/or incorporate weighting factors into the quadrature. New quadrature formulae are proposed here for the purpose of determining the average velocity in a duct. These formulae include, as a boundary condition, a value of zero at the boundaries of the function being integrated. Thus the fact that the flow velocity is zero at the surface of the duct is automatically included in each quadrature. The sampling points and weighting factors needed for each quadrature are presented, along with a sample calculation illustrating the use of a quadrature procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号