首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用于气态零价汞转化的催化剂研究   总被引:4,自引:0,他引:4  
零价汞的高效去除是燃煤烟气汞污染控制过程中的关键环节。为了促进烟气中的零价汞转化为易于去除的氧化态汞,分别考察了在有HCl存在时,几种过渡金属氧化物(Cu、Fe、Mn、Co和Zr)对零价汞氧化的催化作用,以筛选出性能较好的催化组分;为提高催化剂的抗SO2性能,分别尝试了利用几种金属元素(Sr、Ce、W和Mo)对催化剂进行掺杂改性的方法。结果表明,锰氧化物的催化作用最好,其最佳使用温度在573 K左右;SO2对零价汞的催化氧化有明显抑制作用,在无SO2及1 400 mg/m3SO2时锰催化剂对零价汞催化氧化效率分别为93%和78%。而Mo改性的锰氧化物催化剂的抗硫性能大幅提高,在1 400 mg/m3SO2存在的情况下其对零价汞的催化氧化效率可达到90%以上,较其他改性元素高。  相似文献   

2.
A procedure was developed for the 24-h determination of SO2 and CO2 in effluent gas from fossil fuel combustion sources. Laboratory experiments were conducted to test absorption of SO2 in hydrogen peroxide solution and absorption of CO2 by sodium hydroxide on an inert substrate at expected ambient temperatures of 15 to 45°C. Isopropyl alcohol cannot be used to trap sulfuric acid and particulates because it permeates the sampling train and prevents complete absorption of CO2. Elemental analysis of stack particulates revealed that at least 31 elements were present. Iron and other elements interfered with SO2 analysis. These particulates were completely removed by a heated borosilicate glass filter. Both laboratory and field experiments showed that molecular sieves are a promising alternative for CO2 absorption. Statistical evaluation of data collected at three units equipped with flue gas desulfurization scrubbers proved that the new procedure is accurate and precise.  相似文献   

3.
The body of Information presented in this paper is directed to those Individuals concerned with the removal of NOx in combustion flue gases. A catalytic process for the selective reduction of nitrogen oxides by ammonia has been investigated. Efforts were made toward the development of catalysts resistant to SOx poisoning. Nitrogen oxides were reduced over various metal oxide catalysts in the presence or absence of SOx(SO2 and SO3). Catalysts consisting of oxides of base metals (for example, Fe2O3) were easily poisoned by SO3, forming sulfates of the base metals. A series of catalysts which are not susceptible to the SOx poisoning has been developed. The catalysts possess a high activity and selectivity over a wide range of temperatures, 250—450°C. The catalysts were tested in a pilot plant which treated a flue gas containing 110-150 ppm NOx, 660-750 ppm SO2, and 40-90 ppm SO3. The pilot plant was operated at 350°C and at a space velocity of 10,000 h-1. The removal of nitrogen oxides was more than 90% for several months.

A mechanism of the NO-NH3 reaction has also been investigated. It is found that NO reacts with NH3 at a 1:1 mole ratio in the presence of oxygen and the reaction is completely inhibited by the absence of oxygen. The experimental data show that the NO-NH3 reaction in the presence of oxygen is represented byNO + NH3 + 1/4 O2 = N2 + 3/2 H2O.  相似文献   

4.
A study was carried out to investigate the emissions of SO2 and primary sulfate materials (H2SO4 and inorganic particulate matter) from a boiler burning fossil fuel and using a wet-limestone scrubber for SO2 removal. Experiments were designed to assess the scrubbing efficiency for SO2 and sulfate, as well as the potential for scrubber liquor reentrainment. The boiler studied was an 820 MW cyclone-fired unit equipped with a wet, limestone scrubber, consisting of eight two-stage venturi-absorber modules designed to treat a flue gas flow rate of 2,760,000 acfm. The boiler fuel was a low-grade sub-bituminous coal with ash and sulfur contents of 25 and 5%, respectively. Multiple-sampling methods were employed concurrently on the inlet and outlet of a candidate absorber module to measure SO2, total water-soluble sulfate, and free H2SO4. Samples were collected during three field experiments from September 1977 through April 1978. The average SO2 scrubbing efficiency was 76% and was observed to decrease over the 5 day operation/maintenance cycle of the module. The total water-soluble sulfate input to the scrubber amounted to approximately 1% of the total sulfur oxides and was composed of a 5:1 ratio of H2SO4 to particulate sulfate. The total sulfate scrubbing efficiency, averaging about 29%, was invariant with respect to SO2 removal. The sulfate emissions measured in the scrubber exit gas consisted of about 85 % H2SO4 as a fine aerosol. Mass emissions of acid and particulate sulfate were calculated as 1730 Ib/hr and 305 Ib/hr, respectively.  相似文献   

5.
This paper reviews the statistical evidence linking human mortality with air pollution due to sulfur oxides and particulates. Three types of analyses are discussed: episodic increases in mortality coincident with high pollution, perturbations in mortality in a given city as a time-series in relation to perturbations in air quality, and comparisons of geographic differentials in both pollution and mortality rates. The paper concludes that there are no reliable statistical associations between SO x and mortality, but that particulates are in some cases associated with excess mortality. Establishing whether the association is in fact causal would require elimination of potential confounding effects such as occupational exposures.  相似文献   

6.
The precision and accuracy of the determination of particu-late sulfate and fluoride, and gas phase SO2 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for high-and low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m3 and ±2.5 nmol/m3 for the determination of SO2 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m3 and ±2.0 nmol/m3 for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is ±0.3 nmol/m3. The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m3. At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m3) is small, but important relative to the precision of the data and the concentrations of particulate sul-fate present (typically 5-20 nmol sulfate/m3). The concentrations of SO2(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SO2(g) plus particulate sulfate) determined using the two samplers during Project MOHAVE at the Spirit Mountain, NV, and Hopi Point, AZ, sampling sites were in agreement. However, for samples collected at Painted Desert, AZ, and Meadview, AZ, the concentrations of SOx and SO2(g) determined with a high-volume cascade impactor filter pack sampler were frequently lower than those determined using a diffusion denuder sampling system. These two sites had very low ambient relative humidity, an average of 25%. Possible causes of observed differences in the SO2(g) and sulfate results obtained from different types of samplers are given.  相似文献   

7.
A manual procedure Is outlined which utilizes an alkaline permanganate sampling train for the simultaneous collection of nitrogen and sulfur oxides from stationary sources. Dependent on anticipated concentrations, samples of up to an hour duration may be taken. Analysis of the collected NOx and SOx is straightforward, tailored for needed accuracy and minimum employment time. For oxides of nitrogen, the formed nitrites of collection are converted to nitrates. The total nitrate is then reduced to nitrite, diazotized and coupled to form a red dye. This is all accomplished with a commercially available "ready-made" reagent. The oxides of sulfur are determined by the turbidimetric barium sulfate procedure. Data are shown comparing the proposed method from numerous types of emission sources, both with accepted methods and newer instrumental techniques. The ability to sample simultaneously for NOx and SOx has many advantages, i.e., power plants, boilers, and other sources where both gases are of interest for compliance and/or source Inventory purposes.  相似文献   

8.
Ko TH  Chu H  Tseng JJ 《Chemosphere》2006,64(6):881-891
In this study, seven natural soils were tested for the sorption of hydrogen sulfide from coal gasification gas at high temperature. Results indicate that the LP natural soil has the best performance and the highest sulfur sorption capacity. After extracting free iron oxides, most natural soils have no sorption efficiency. The free iron oxides, therefore, proved to be the major components that react with hydrogen sulfide to form iron sulfides. The sulfur sorption capacity, either determined by EA or breakthrough time, is very close to the theoretical value based on the stoichiometric calculation with the content of free iron oxides. Moreover, the presence of CO is a positive effect while H2 is a negative effect. This can be explained via the water-shift reaction. On the basis of the results of temperature-programmed sulfidation (TPS), the starting temperature for the sorption of hydrogen sulfide is between 623-673 K. From the analyses of temperature-programmed oxidation (TPO) and XPS, the iron polysulfides are the major products and approximately 90% regeneration efficiency can be theoretically achieved while the temperature is controlled higher than 813 K. In the regeneration tests, the results show that the LP natural soil can be regenerated and thus reused after the oxidation process. No significant degeneration occurs on the LP natural soil after five sorption/regeneration cycles. The sulfur sorption capacity of the tenth regenerated soil can be achieved at least 80% compared to the fresh one. The experimental analyzed SO2 concentration from the regeneration process is almost identical to the theoretical calculated equilibrium concentration of the process. Maghemite is the main product after the regeneration process.  相似文献   

9.
Biochemical and physiological experiments were conducted on pea plants (Pisum sativum) continuously exposed in growth chambers to SO2 gas for 18 days. S02 gas concentrations were 0.1, 0.15, and 0.25 ppm. In plants exposed to 0.1 and 0.15 ppm it was clearly demonstrated that there was a greater accumulation of inorganic sulfur, a reduced buffer capacity of the cells relative to H-ions, and a stimulation of glutamate dehydrogenase activity. The only macroscopic symptom seen was slight chlorosis of the older leaves. There was only a slight decrease in fresh and dry weights of these plants compared to the control plants whereas in the group of plants exposed to 0.25 ppm SO2 foliage necrosis was considerable. In addition, there was a marked reduction in the fresh and dry weights of the latter plants. However, the relationship among accumulated inorganic sulfur, reduced buffer capacity, and increased glutamate dehydrogenase activity as seen for the lower S02 concentrations was close. Accordingly, if might be possible to use these three parameters to diagnose S02 injury before any significant symptoms appear. In the case of severe SO2 injury there was a marked increase in glutamine and ammonia concentrations suggesting that these factors in addition to the above could be used in diagnosing severe SO2 injury. There was no significant difference between plants treated with 0.1 or 0.15 ppm SO2 and control plants in the contents of K, Ca, P, and N fractions. Therefore, these factors would not be useful in the early detection of SO2 injury.  相似文献   

10.
Jin Y  Veiga MC  Kennes C 《Chemosphere》2007,68(6):1186-1193
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.  相似文献   

11.
Abstract

The purpose of this investigation was to quantify the potential of natural gas to reduce emissions from stationary combustion sources by analyzing the case study of the metropolitan region of Santiago, Chile. For such purposes, referential base scenarios have been defined that represent with and without natural gas settings. The method to be applied is an emission estimate based on emission factors. The results for this case study reveal that stationary combustion sources that replaced their fuel reduced particulate matter (PM) emissions by 61%, sulfur oxides (SOx) by 91%, nitrogen oxides (NOx) by 40%, and volatile organic compounds (VOC) by 10%. Carbon mon-oxide (CO) emissions were reduced by 1%. As a result of this emission reduction, in addition to reductions caused by other factors, such as a shift to cleaner fuels other than natural gas, technological improvements, and sources which are not operative, emission reduction goals set forth by the environmental authorities were broadly exceeded.  相似文献   

12.
Reference methods for the determination of mercury emissions from stationary sources typically include collection of mercury by solutions which are acidic and oxidizing. In the presence of high levels of SO2 the oxidizing capacity of these absorbing solutions will be degraded and the collection efficiency for mercury compromised. This seriously limits the usefulness of the reference methods as they apply to the mining and smelting industries. In the present work peroxide is used to remove SO2 and acidic permanganate is used to collect mercury. At a mean sampling rate of 10 L/min concentrations of at least 12 mg/m3 mercury can be satisfactorily collected in the presence of up to 20,000 ppm SO2.  相似文献   

13.
Municipal refuse usually contains only 0.10-0.15% sulfur. During combustion a minor fraction of the sulfur is released as SO2, while the major fraction is fixed in the ash, which contains alkaline oxides. Contrasted with coal and heavy fuel oil, municipal refuse is a minor to negligible source of SO2 air pollution.  相似文献   

14.
Natural gas often contains high concentrations of hydrogen sulfide which must be removed before the gas can be transmitted by pipeline. Sour gas plants extract the sulfur, by converting it to elemental sulfur through a modified Claus process. The sulfur recovery is 93% for small plants (10–100 tonnes of sulfur per day) to 99% for large plants (1000–4000 tonnes of sulfur per day). The unrecovered sulfur is Incinerated giving rise to relatively small emissions of SO2 characterized by high buoyancy and low momentum.

Using a unique aerial probing methodology, plume dispersion studies were conducted on two plants located fn the foothills of southwestern Alberta, Canada. These studies were generally conducted under neutral conditions and with westerly air flows typical of Chinook conditions. Notable variations of the plume dispersion parameters from accepted predictive values were found, indicating that such values cannot be used with confidence to estimate plume rise and dispersion in the mountain foothills.  相似文献   

15.
Abstract

Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.  相似文献   

16.
A portable gas dilution apparatus has been constructed by which reproducible known mixtures of the common air pollutants added to carbon filtered air can be prepared in any desired quantity, complexity, and concentration. Sulfur dioxide mixtures with and without the addition of nitrogen dioxide and/or ozone have been analyzed by the conductimetric, titrimetric, turbidimetric, and colorimetric methods. Excellent analytical agreement with the concentrations obtained from the volumes of sulfur dioxide, nitrogen dioxide, hydrogen sulflde, and air that are mixed has been shown by all these methods when an efficient absorber is used though the titrimetric method tended to give slightly low results. Some common absorbers show reduced efficiency in absorbing some of the gases. Nitrogen dioxide determinations by the Saltzman method are not significantly affected by the addition of sulfur dioxide to the nitrogen dioxide-air mixtures. A modification of the Saltzman reagent, due to Lyshkow, was tested. It accelerates the rate of color development and should be useful in the automatic nitrogen dioxide analyzer. The determination of hydrogen sulfide is not affected by the presence of nitrogen dioxide in the gas mixture but sulfur dioxide increases the sulfide reading by about 5-15% while ozone decreases the reading.  相似文献   

17.
Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 °C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 °C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas.
ImplicationsSimultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.  相似文献   

18.
The nitrate ion selective electrode was investigated as an alternative approach to the present colorimetric determination of nitrate resulting from oxidative absorption of nitrogen oxides from combustion effluents. The electrode offers advantages of speed and relatively simple experimental procedure. Replicate measurements of 10?4–10?2M nitric acid solutions using bracketing standards show that the electrode approach is capable of good precision (coefficient of variation = ±4%). Comparison of a method utilizing the nitrate electrode with the more laborious phenol disulfonic acid method for the measurement of nitrogen oxides in both oil and gas fired combustion effluents showed agreement within 4% of the mean even in the presence of high levels of SO2. The correlation coefficient found for PDS vs nitrate electrode is 0.987.  相似文献   

19.
An examination of the available toxicological literature indicates that sulfur dioxide itself would be properly classified as a mild respiratory irritant, the main portion of which is absorbed in the upper respiratory tract. The reported industrial experience of symptoms of mild chronic respiratory irritation from exposures at or above 5 ppm is compatible with what would have been predicted on the basis of available toxicological data. The basic physiological response to inhalation of pure SO2 appears to be a mild degree of bronchoconstriction reflected in a measurable increase in flow resistance. Although the response is highly variable, most individuals tested have responded to 5 ppm and levels of 5 to 10 ppm have upon occasion produced severe bronchospasm in sensitive individuals. This serves to point up the fact that experience with the industrial Threshold Limit Value (5 ppm) is not applicable as a guide for the general population. Although the majority of individuals tested have shown no detectable response to levels of 1 ppm, there are again sensitive individuals who have responded. It is not known whether these individuals would have responded to concentrations lower than this. The response of these more sensitive individuals to 1 ppm would be classified as detectable response, not as severe bronchospasm. An examination of the available toxicological literature also indicates that sulfuric acid and irritant sulfates, to the extent that the latter have been examined, are more potent irritants than sulfur dioxide. This has been demonstrated in studies using morality and lung pathology as criteria as well as in studies using alterations in pulmonary function in experimental animals and human subjects. The irritant potency of these substances is affected by particle size and by relative humidity, which factors are probably interrelated. It is unfortunate that these substances have not been as yet studied in as great detail as has the less irritant sulfur dioxide. There is evidence which cannot be ignored, even though it is based entirely on animal experiments of one investigator, indicating that the presence of particulate material capable of oxidizing sulfur dioxide to sulfuric acid caused a three to fourfold potentiation of the irritant response. The aerosols causing this potentiation were soluble salts of ferrous iron, manganese and vanadium all of which would become droplets upon inhalation. Insoluble aerosols such as carbon, iron oxide fume, triphenylphosphate or fly ash did not cause a potentiation of the irritant action of SO2 even when used at higher concentrations. The concentrations of SO2 used in these various experiments were in some cases as low as 0.16 ppm. The catalytic aerosols were used at concentrations of 0.7 to 1 mg/m3 which is above any reported levels of these metals in urban air. If the SO2 present as an air pollutant remained unaltered until removed by dilution, there would be no evidence in the toxicological literature suggesting that it would be likely to have any effects on man at prevailing levels. Studies of atmospheric chemistry have shown that SO2 does not remain unaltered in the atmosphere, especially under onditions of high humidity and in the presence of particulate material, but is converted to H2SO4. Such a conversion increases its irritant potency. On this basis the toxicological literature combined with the literature of atmospheric chemistry suggest that sulfur dioxide levels be controlled in terms of the potential formation of irritant particles. This means that control measures as far as feasible should be aimed at both SO2 and particulate material and not against either alone.  相似文献   

20.
Fourteen sulfur and/or sulfuric acid producing regenerate FGD processes were discussed at the 1974 FGD Symposium in Atlanta. During the period elapsed since then, considerable status change has occurred on many of these regenerable processes. Other regenerable processes which were not as well known during 1974 have surfaced in 1975. The problems of obtaining reducing gases (hydrogen sulfide, carbon monoxide, and hydrogen) for the reduction of sulfur dioxide product streams to elemental sulfur have become severe due to shortages of natural gas or other petroleum based feedstock. A new sulfur producing process which employs CO and H2 directly (rather than the H2S required for liquid and vapor base Claus reactions) is gaining attention. This paper discusses briefly: (1) the announced status of the many regenerable FGD processes, (2) the problem of reductant gas supply, and (3) the effect on FGD processes of using coal based reducing gas instead of reformed natural gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号