首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The composition and abundance of bladedwelling meiofauna was determined over a 15 mo period (1983–1984) from a Thalassia testudinum Banks ex König meadow near Egmont Key, Florida, USA. Harpacticoid copepods, copepod nauplii, and nematodes were the most abundant meiofaunal taxa on T. testudinum blades. Temporal patterns in species composition and population life-history stages were determined for harpacticoid copepods, the numerically predominant taxon. Sixteen species or species complexes of harpacticoid copepods were identified. Harpacticus sp., the most abundant harpacticoid, comprised 47.8% of the total copepods collected, and was present throughout the study. Copepodites dominated the population structures of the blade-dwelling harpacticoid species on most collection dates. Ovigerous females and/or copepodites were always present, indicating continuous reproductive activity. Results suggest that epiphytic algae influence meiofaunal abundance on seagrass blades, as densities of most meiofaunal taxa at Egmont Key were positively associated with percent cover of epiphytic algae throughout the study. The majority of significant correlations between meiofaunal density and cover of epiphytic algae involved filamentous algae, although encrusting algae dominated the epiphytic community. It appears that resources provided by epiphytic algae to seagrass meiofauna (additional food, habitat, and/or shelter from predation) may be associated with algal morphology.  相似文献   

2.
The entry of meiobenthic copepods from sediments or seagrass blades into the water column and reproductive characteristics of actively migrating fauna were investigated from 1981–1986 in a temperate intertidal Zostera capricorni seagrass bed in Pautahanui Inlet, New Zealand and in a subtidal Thalassia testudinum bed in Tampa Bay, Florida, USA. Emergence of copepods in New Zealand varied over a tidalcycle, while in Florida a distinct diel periodicity was displayed. Selected copepod species in New Zealand had similar numbers emerging from sediments and/or blades over a 6 h period as the common copepods actively migrating from sediments in Florida. Daily abundances of emerging copepods (24 h) in Tampa Bay, Florida, were substantially greater than those in New Zealand, where migration is linked to tidal cover. In Z. capricorni meadows in New Zealand, sex ratios of copepods in sediments and on blades were dominated by females; males dominated water-column samples. In T. testudinum meadows in Tampa Bay, sex ratios of males to females, although of a lowermagnitude than in Z. capricorni beds, were higher in trap than in sediment samples. Differences in sex ratios, the availability in emergence traps of females of appropriate stage for mating, and observations on clasping in live samples from traps suggest that swimming behavior in copepods may be partly linked to prenuptial courtship. Meiobenthic copepods may use the water column as an important habitat for reproductive behavior.  相似文献   

3.
The hypothesis was tested that predation-disturbance by epibenthic macrofauna affects the abundance of sediment-dwelling harpacticoid copepods. The copepods inhabited a subtidal seagrass (Zostera marina L.) bed in British Columbia, Canada. The response of the harpacticoid community was observed in controlled field experiments in which epibenthic predators-disturbers were excluded from portions of the seagrass bed. Controlled, exclusion-cage (0.8 m2 area, 7-mm mesh) experiments were conducted within the seagrass bed from late March/early April to mid-June in both 1986 and 1987. Sampling was conducted biweekly. Exclusion of large epibenthic predators-disturbers had little effect on sediment-dwelling harpacticoid copepod density. Total harpacticoid numbers and abundances of dominant species generally did not increase in the exclusion treatment relative to the control. Shifts in species composition of the harpacticoid community did not occur. The treatment control was adequate in simulating the exclusion cage structure. It appears that large epibenthic predators-disturbers have little impact on the abundance of harpacticoid copepod populations at this study site.  相似文献   

4.
From a conservation point of view, it is essential to know how fast an ecosystem can recover after physical disturbance. Meiofauna and especially harpacticoid copepods are abundant in seagrass beds and are therefore useful to study ecosystem recovery after disturbance. In the western Caribbean coast, a fragmented Thalassia testudinum seagrass bed was selected to conduct a colonization field experiment by means of plastic seagrass mimics. Meiofauna colonization, with special emphasis on harpacticoid copepods, was followed in relation to: (1) colonization time (2, 4, 6, 10, 14 and 21 days); (2) distance to source of colonizers (close and far series) and (3) leaf surface area to colonize (small, medium, large). Colonization was recorded after 2 days with average meiofauna densities of 480 ind/100 cm2 (close) and 1350 ind/100 cm2 (far) of leaf surface area, while on average 400 ind/100 cm2 were collected from the natural seagrass plants. In this early phase, the meiofauna diversity was high, with on average 8 taxa. A longer period of colonization (21 days) showed an increased meiofaunal density and diversity (average density: 3220 ind/100 cm2, 13 taxa). Increasing meiofauna colonization with time is probably related to the development of a biofilm making the leaf more attractive for meiofauna. The effect of distance was not so pronounced as that of time. Total absolute densities were highest in the far series (5 m away from natural seagrass patch), mainly because of nematode densities. Meiofauna diversity was lower in the far series than in the close series (at the border of the natural seagrass patch). A larger individual leaf surface area did not affect the overall meiofauna densities but had a significant positive effect on copepod densities. Larger surface areas promoted the presence of epiphytic copepod families such as Tegastidae and Dactylopusiidae. Overall, we found a rapid recovery of meiofauna in fragmented seagrass beds with primary colonizers (both nematodes and benthic opportunistic copepods) originating from the sediment and later colonizers as epiphytic copepods and their nauplii from the local seagrass regeneration pool.  相似文献   

5.
Several harpacticoid copepod species are adapted to an epiphytic lifestyle. Previous studies on tropical seagrass meiofauna mainly focussed on the epiphytic communities and neglected the benthic component. The present study aims to document the benthic harpacticoid copepod communities sampled from different sediment depth horizons adjacent to five seagrass species in the intertidal and subtidal zone of a tropical seagrass bed (Gazi Bay, Kenya). Two benthic copepod communities could be identified mainly based on the tidal position of the samples: a first community was collected near the intertidal seagrasses Halophila ovalis and Halodule wrightii; a second community occurred near the subtidal seagrasses Thalassia hemprichii, Syringodium isoetifolium and Halophila stipulacea. The first community was mainly determined by sediment characteristics (e.g. skewness), while the second community was split off based on organic matter content (% TOM), nutrient and pigment values. A subtle combination of horizontal and vertical niche segregation was reported for the dominant copepod families. Species of the families Thalestridae, Laophontidae and Diosaccidae were structured by tidal position and showed a strong preference for the subtidal zone. The opposite strategy, i.e. a clear preference for the intertidal zone, was found for copepods belonging to the families Paramesochridae and Canuellidae. In addition, Apodopsyllus africanus (Paramesochridae) was well-adapted to stress and was concentrated in the deeper sediment layers near the subtidal seagrasses. On the other hand, Canuellidae, as filter feeders, were concentrated in the upper centimetres of the sediment. The families Ectinosomatidae and Cletodidae did not show any vertical or horizontal segregation. On the species level, however, clear horizontal niche segregation was detected for the family Cletodidae. In addition to the reported ecological results, the study material was used to evaluate different niche definitions. We found tidal position to be the most important factor forcing harpacticoids to specialise. Sediment depth horizon was less powerful in dividing the families into different guilds (from specialists to generalists) based on standardised niche breadth. The present study documents the subtle habitat partitioning of co-existing species in a limited area and its role in sustaining high biodiversity in the community.  相似文献   

6.
About 70% of the copepods entering the cooling water system of a nuclear power plant on northeastern Long Island Sound (USA) are not returned to the Sound in the effluent. Copepod mortalities are caused by the mechanical or hydraulic stresses of passage, although our experimental design could not determine whether heat or chlorination could cause mortality in the absence of mortality induced by hydraulic stress. After passing through the power plant, copepods sink rapidly (ca. 2.5 times faster than controls). This leads to an increase in concentrations of copepods suspended in the deep water (25 to 30 m) of the effluent pond. About half of the live copepods collected at the discharge and held in situ died within 3.5 days, and 70% died within 5 days, whereas only 10% of those from the intake died in 5 days. About 60% of the copepods observed suspended in deep water in the pond were dead. The copepod mortality caused by the power plant reflects the loss in secondary production occurring below about 270×103 m2 of sea surface in Long Island Sound annually. This loss represents a reduction of about 0.1% in the annual secondary production over a 333 km2 area of Long Island Sound adjacent to the power plant. Highest losses occurred during the spring (April, 1.4×106 g dry weight), the lowest in autumn (November, 45.8×103 g). If the same copepod loss rate exists for all power plants in Long Island Sound, then secondary production in 1.69×106 m2, or 0.05% of the total copepod production may be lost annually. A comparison of the surface outflow from Long Island to Block Island Sound with the water entrained through Millstone Unit One, and the 70% copepod loss rate in the latter area, indicates that Unit One eliminates about 0.1 to 0.3% of the copepod production in eastern Long Island Sound. This calculation compares favorably with losses computed from production data.  相似文献   

7.
 Protozoa are known for their intermediary trophic role in transferring organic matter from small size planktonic particles to mesozooplankton. This study concentrates on the possible addition of biochemical value during this transfer, by new production of compounds that are essential in copepod food. In laboratory experiments, copepods could not be raised on a diet of the chlorophycean Dunaliella sp., though they readily consumed this alga. Dunaliella sp. contained all essential amino acids, but was deficient in highly unsaturated fatty acids and in sterols. In contrast to copepods, the heterotrophic dinoflagellate Oxyrrhis marina grew well on Dunaliella sp., producing significant amounts of the long-chain fatty acids docosahexaenoic acid and eicosapentaenoic acid, in addition to cholesterol and brassicasterol. Using this O. marina grown on Dunaliella sp. to feed Temora longicornis and Pseudocalanus elongatus, both copepod species rapidly developed from young nauplius larvae to maturity on the dinoflagellate diet. Hence, in this experimental food-chain the inadequate chlorophycean food was biochemically upgraded by the protozoan to high-quality copepod food. The results indicate that highly unsaturated fatty acids and/or sterols are essential compounds, which can be produced by protozoans. Due to their intermediate size, the mechanism of trophic upgrading by protozoans may bridge the gap of essential nutrients between the microbial loop and higher trophic levels. Received: 11 January 1999 / Accepted: 3 June 1999  相似文献   

8.
Fish faunas were sampled seasonally using a large and a small beam trawl in three seagrass habitats comprising predominantly Amphibolis griffithii or Posidonia sinuosa or Posidonia coriacea, which differ in seagrass and meadow structure. Amphibolis griffithii and P. sinuosa both produce a relatively dense leaf canopy, but the former exhibits a distinct architecture, with the leaf canopy overlying relatively open spaces surrounding woody stems, compared to the uniformly dense blade-like leaves of P. sinuosa which emerge directly from the sediment. In comparison, P. coriacea provides a landscape of patchy seagrass amongst areas of bare sand. Since the latter seagrass habitat contains large areas of sand, fish were also sampled in adjacent unvegetated areas. The number of species and density of fish were greater (P<0.05) in P. sinuosa than in either A. griffithii or P. coriacea. The mean number of species caught using the large trawl ranged from 16 to 24 in the first of these habitats compared to 14–21 and 9–15 in the last two habitats, respectively, and the mean densities ranged between 78 and 291 fish 1000 m?2 in P. sinuosa compared to 31–59 fish 1000 m?2 in A. griffithii and 31–59 fish 1000 m?2 in P. coriacea. The biomass of fish was greater (P<0.05) in both P. sinuosa and A. griffithii than in P. coriacea (4.2–5.3 kg and 3.3–6.2 kg versus 0.7–1.9 kg 1000 m?2, respectively). Furthermore, the size-structure of fish differed among these habitats, where the median weight of fish was 72.1 g in A. griffithii, compared to 7.5 g and 19.8 g in P. sinuosa and P. coriacea, respectively. Ordination and ANOSIM demonstrated that the species-composition differed markedly among the three seagrass habitats (P<0.001), suggesting that fish species display a distinct preference for particular seagrasses characterised by different architecture. Differences in species-composition among the seagrass habitats partly reflected the size-composition of fish in each habitat. The open space below the canopy of A. griffthii is likely to allow larger fish to occupy this habitat, whereas only small fish would be able to penetrate the dense foliage of P. sinuosa. Differences in species- and size-composition of fish among these habitats may be the result of settlement-sized larvae discriminating between particular seagrass and meadow structures, or fish being subject to different levels of predation and/or accessibility to food or space. The species-composition in P. coriacea was highly dispersed and did not differ from that of unvegetated areas. While several species were associated with both P. coriacea and bare-sand habitats, some species did display a high affinity with the seagrass P. coriacea. This may reflect an association with the sparse and narrower leaves of this seagrass or with the patchy occurrence of the seagrass Heterozostera tasmanica, which commonly occurs as an understorey in this habitat.  相似文献   

9.
J. Yen 《Marine Biology》1983,75(1):69-77
Adult females of the large carnivorous copepod Euchaeta elongata Esterly were collected from 1977 to 1980 in Port Susan, Washington, USA. Predation rates of the adult females increased with increasing prey abundance when fed the following 4 sizes of copepods: adult females of Calanus pacificus (average prosome length [PL] of 2 650 μm), adults of Aetideus divergens (PL of 1 560 μm), adult females of Pseudocalanus spp. (PL of 1 060 μm), and nauplii of C. pacificus (PL of 410 μm). Saturation feeding levels were reached when adult females of the predator were fed the small adult copepod, Pseudocalanus spp. Maximum biomass ingested of this small copepod was more than the maximum amount ingested of the larger copepods. Predation rates of the predatory copepodids at Stages IV and V also increased with increasing concentration of the 1 060 μm (PL) prey. High feeding rates exhibited by both adults and copepodids at Stage V of the predator indicate their importance as sources of mortality on populations of small copepods. Ingestion efficiency E i (prey wholly consumed [prey attacked]-1) varied as follows: adults of E. elongata were more efficient than copepodids of E. elongata; adults were more efficient than copepodids when ingesting smaller prey; starved adults were more efficient than fed ones; and both adults and copepodids were more efficient at low food concentrations. For adults of E. elongata, there were no marked seasonal variations in predation or respiratory rates that would represent acclimatory responses; however, small adults obtained during winter were more efficient at ingesting prey than were the larger adults gathered in summer. This seasonal variation in the efficiency of ingestion may be a useful indicator of physiological state: high E i values could indicate that predators are starving in winter, and low E i values could indicate that predators are satiated in summer.  相似文献   

10.
This study examined the effects of a guild of micrograzing harpacticoid copepods (dominated by two species of Paradactylopodia sp. nov. and one species of Scutellidium sp. nov.) and a mesograzing periwinkle, Afrolittorina praetermissa, on the early recruitment of intertidal macroalgae on a wave-exposed, rocky shore. This is the first study, to our knowledge, to examine the effects of micrograzers (<500 μm) on intertidal macroalgal recruitment. Data showed that microscopic harpacticoid copepods altered the assemblages and reduced the densities of several macroalgal taxa, while A. praetermissa changed the assemblages and reduced both the density and number of macroalgal taxa. Recruitment of encrusting coralline algae was actually higher in copepod inclusions than exclusions, suggesting that copepods may be beneficial to the recruitment of this algal group. These results contribute to the understanding of grazing as a factor causing high mortality of algal recruits, but also highlight the need for more studies that examine the effects of micro- and mesograzers on the distribution and abundance of macroalgae.  相似文献   

11.
An experimental study was conducted in a South Carolina, USA salt marsh to examine relationships between meiofaunal-sized tube structure and densities of burrowing meiofauna. Abundance of the tube-building polychaete Manayunkia aestuarina Bourne was increased by erecting exciosure areas from June–August 1979. Non-manipulated areas of identical dimensions were staked out in adjacent locales. Densities of burrowing meiofauna and nematode trophic groups, and volumes of Spartina alterniflora root mat and tube-builders were monitored approximately every 2 wk from each experimental treatment. Volumes of tube-builders were significantly higher inside exclosure sites on all dates in July and August. Root-mat volume and total number of nematodes were not different between treatments at any time. The dominant copepod species, Stenhelia (D.) bifidia, and the nematode species, Spirinia sp., first increased in number inside manipulated sites and then decreased in abundance as tube volume increased. No general trend was apparent for nematode trophic groups when areas with increased volumes of tubebuilders were compared to unmanipulated sites. The fact that densities of S (D.) bifidia and Spirina sp. decreased only when tube-builders attained highest abundance suggests that negative interactions between tube-builders and these meiofaunal taxa may be effective only at elevated abundances.  相似文献   

12.
Information on physiological rates and tolerances helps one gain a cause-and-effect understanding of the role that some environmental (bottom–up) factors play in regulating the seasonality and productivity of key species. We combined the results of laboratory experiments on reproductive success and field time series data on adult abundance to explore factors controlling the seasonality of Acartia spp., Eurytemora affinis and Temora longicornis, key copepods of brackish, coastal and temperate environments. Patterns in laboratory and field data were discussed using a metabolic framework that included the effects of ‘controlling’, ‘masking’ and ‘directive’ environmental factors. Over a 5-year period, changes in adult abundance within two south-west Baltic field sites (Kiel Fjord Pier, 54°19′89N, 10°09′06E, 12–21 psu, and North/Baltic Sea Canal NOK, 54°20′45N, 9°57′02E, 4–10 psu) were evaluated with respect to changes in temperature, salinity, day length and chlorophyll a concentration. Acartia spp. dominated the copepod assemblage at both sites (up to 16,764 and 21,771 females m?3 at NOK and Pier) and was 4 to 10 times more abundant than E. affinis (to 2,939?m?3 at NOK) and T. longicornis (to 1,959?m?3 at Pier), respectively. Species-specific salinity tolerance explains differences in adult abundance between sampling sites whereas phenological differences among species are best explained by the influence of species-specific thermal windows and prey requirements supporting survival and egg production. Multiple intrinsic and extrinsic (environmental) factors influence the production of different egg types (normal and resting), regulate life-history strategies and influence match–mismatch dynamics.  相似文献   

13.
The role of zooplankton in a tropical seagrass ecosystem was investigated in milkfish farms pollution-impacted and -unimpacted seagrass beds in Santiago Island coral reefs, Northwestern Philippines. The aim was to compare between the two sites: (1) abiotic factors and zooplankton community parameters, and (2) the trophic structure using C and N stable isotopes. Low water (98–119?mV) and sediment (–121 to ?138?mV) Oxidation Reduction Potential values indicated a reducing environment in the impacted site. Zooplankton in the impacted site showed the typical community response to eutrophication (low diversity, but high total abundance due to the dominance of the cyclopoid copepod Oithona oculata), generally few elevated δ15N values, but a significant shift towards depleted 13C due to the organic enrichment of fish-farm feeds. Apart from suggesting a highly complex food web with POM and zooplankton as main food sources in the unimpacted site, the Bayesian mixing model simulation generated reduced complexity in feeding interactions between basal sources, zooplankton, and fish including adults of a key fish species, Siganus fuscescens, in the impacted sites. In this study, C and N stable isotope analysis has clarified the importance of zooplankton as fish prey in a seagrass bed food web.  相似文献   

14.
Infection of copepods by parasitic dinoflagellates has been known for many years, but the ecological consequences of this parasitism have been largely neglected. We estimated mortality rates in the copepodParacalanus indicus Wolfenden due to parasitism by the dinoflagellateAtelodinium sp. by applying laboratory mortality rates to a field population of infected copepods in Port Phillip Bay, Australia, sampled in 1982–1985. Adult female copepods were most often infected, with an incidence of 0 to 28.5% (median 6.2%). Stage V female copepodites were less often infected, and males were never infected. The median mortality rate in females was about 7% d–1, or about one-third of total mortality, and the maximum was 41% d–1. The frequent occurrence of dinoflagellate parasitoids in some species of copepod implies an important, species-specific mechanism for the regulation of populations.  相似文献   

15.
Diel vertical migration (DVM) is a common behavior adopted by zooplankton species. DVM is a prominent adaptation for avoiding visual predation during daylight hours and still being able to feed on surface phytoplankton blooms during night. Here, we report on a DVM study using a Video Plankton Recorder (VPR), a tool that allows mapping of vertical zooplankton distributions with a far greater spatial resolution than conventional zooplankton nets. The study took place over a full day–night cycle in Disko Bay, Greenland, during the peak of the phytoplankton spring bloom. The sampling revealed a large abundance of copepods performing DVM (up during night and down during day). Migration behavior was expressed differently among the abundant groups with either a strong DVM (euphausiids), an absence of DVM (i.e., permanently deep; ostracods) or a marked DVM, driven by strong surface avoidance during the day and more variable depth preferences at night (Calanus spp.). The precise individual depth position provided by the VPR allowed us to conclude that the escape from surface waters during daytime reduces feeding opportunities but also lowers the risk of predation (by reducing the light exposure) and thereby is likely to influence both state (hunger, weight and stage) and survival. The results suggest that the copepods select day and night time habitats with similar light levels (~10?9 μmol photon s?1 m?2). Furthermore, Calanus spp. displayed state-dependent behavior, with DVM most apparent for smaller individuals, and a deeper residence depth for the larger individuals.  相似文献   

16.
Omnivorous feeding behavior of the Antarctic krill Euphausia superba   总被引:5,自引:0,他引:5  
Feeding experiments were conducted at Palmer Station from December 1985 to February 1986 to examine the potential role of copepod prey as an alternative food source for Euphausia superba. Copepod concentration, copepod size, phytoplankton concentration, the duration of krill starvation and the volume of experimental vessels were altered to determine effects on ingestion and clearance rates. Krill allowed to feed on phytoplankton and copepods in 50-litre tubs showed greatly increased feeding rates relative to animals feeding in the much smaller volumes of water traditionally used for krill-feeding studies. Clearance rates on copepods remained constant over the range of concentrations offered, but clearance rates on phytoplankton increased linearly with phytoplankton concentration. Feeding rates increased when larger copepods were offered and when krill were starved for two weeks prior to experiments. Clearance rates of krill feeding on copepods were higher than, but not correlated with, their clearance rates on phytoplankton in the same vessel. E. superba may have a distinct mechanism for capturing copepods, perhaps through mechanoreception. Although our observed clearance rate of 1055 ml krill-1 h-1 indicates that krill can feed very efficiently on copepod prey, such feeding would meet less than 10% of their minimum metabolic requirements at the typical copepod concentrations reported for Antarctic waters. However, substantial energy could be gained if krill fed on the patches of high copepod concentrations occasionally reported during the austral summer, or if krill and copepods were concentrated beneath the sea ice during the winter or spring months. Our results, indicating efficient feeding on zooplankton and higher clearance rates on phytoplankton than previously believed, represent a step towards balancing the energy budget of E. superba in Antarctic waters.  相似文献   

17.
The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 μg C m−3 day−1. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg m−2 day−1).  相似文献   

18.
The feeding structures or houses of the giant larvacean Bathochordaeus sp. serve as both habitat and food for the calanoid copepod Scopalatum vorax. Gut contents of S. vorax include both microbial and metazoan associates of larvacean houses, and possibly the house-mucus matrix itself. Copepods were observed and collected from larvacean houses between 100 and 500 m in Monterey Bay, California, using a submersible ROV (remotely operated vehicle) from the Monterey Bay Aquarium Research Institute. Gut contents were compared to potential food items on the houses and in the open water (not associated with the house). Copepods were generalist feeders, with amorphous detritus, diatoms, and copepods or other crustacean parts dominating gut contents. Protozoans and algae other than diatoms were rarer in guts. Houses contained a diverse assemblage of microplankton and metazoans, both intact specimens and detrital remains of these. Numbers of diatoms and fecal pellets were enriched by 1 to 3 orders of magnitude on houses compared to numbers in surrounding water. Many of the abundant species of diatoms and copepods on houses occurred in S. vorax guts. This observation coupled with S. vorax feeding habits observed in situ and in the laboratory provide evidence for feeding on houses. S. vorax appears to possess special adaptations to living in a resource-limited environment, such as gorging as a feeding adaptation, chemosensory structures to help locate houses, and the ability to change feeding modes. Consumption of detritus at depth by S. vorax provides evidence that metazoans contribute to remineralization of particulate organic carbon in the mesopelagic zone.  相似文献   

19.
In the period September 1986 to August 1987 fish were captured once a month, using an otter trawl, from the intertidal and subtidal regions of Sulaibikhat Bay, Kuwait. Correlation analysis revealed that numbers were not directly related to temperature at the time of sampling. The recruitment of large numbers of young of the year Liza carinata (Valenciennes) during March was related to low temperatures in November, the probable time of spawning of this species. Salinity at the time of sampling was inversely correlated with numbers. This result indicates that large numbers of 0+fish recruit to the Bay during the period of maximum fresh water outflow through the Shatt-al-Arab. Numbers of fish were significantly greater in the intertidal region, where they were present almost entirely as 0 group fish, than in the subtidal. The three dominant species of the assemblage are shown to use the two depth intervals in differnt ways. L. carinata was capture a almost exclusively in the intertidal region as 0+ fish. Pomadasys stridens (Forsskål) was captured as 0+ fish in both the intertidal and subtidal regions but in greater numbers in the intertidal region. Leiognathus brevirostris (Valenciennes) was captured as small, mostly 0+ individuals in the intertidal region and as larger fish in the subtidal region. The use made by the smaller fish of the intertidal region is related to the avoidance of sublittoral predators and reduction of intraspecific competition, whilst larger fish in the sublittoral region may be avoiding predation by piscivorous birds.  相似文献   

20.
The fate of nitrate in sediments from seagrass (Zostera capricorni Aschers.) beds of Moreton Bay on the subtropical eastern coast of Queensland, Australia, was investigated. Added nitrate was metabolised at rates of 0.4 to 3.4 g N cm-3 d-1 when sediments were incubated under anaerobic conditions with a large excess of nitrate. The potential rate of nitrate utilization was as rapid in sediments from subtidal bare areas as from adjacent seagrass beds. Ammonium was produced rapidly from15N-nitrate by microbial action in all the subtidal sediments examined. After 12 h of incubation, 13 to 28% of the15N initially added as labelled nitrate was detected as labelled ammonium in the sediments. Denitrification, although not measured directly, appeared to be a relatively minor fate of nitrate. Benthic microbes took up large amounts of15N but only after a delay of 6 h; this pattern could have been due to induction and synthesis of the enzymes necessary for nitrate uptake, and the assimilation of labelled ammonium. Under field conditions, assimilation by seagrasses and denitrification by bacteria were probably not significant sinks for nitrate in comparison with uptake by benthic microbes and dissimilatory reduction to ammonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号