首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用聚乙二醇(PEG)/葡聚糖(DEX)双水相体系分离餐厨垃圾发酵产物乳酸,分析了聚合物浓度和分子量的影响,以及餐厨垃圾多批次连续发酵时乳酸产率。实验结果表明,PEG/DEX双水相体系对乳酸菌生长影响不大,PEG和DEX浓度变化对乳酸产率、相体积比无显著影响;当DEX分子量由20 000升至40 000,乳酸生成速率由0.631 g/(L.h)降至0.518 g/(L.h),乳酸浓度由33 g/L降至22 g/L。多批次餐厨垃圾连续发酵可极大缩短发酵时间,在不投加缓冲剂的情况下,单批次乳酸产率仍大于0.30 g/g,累积产率大于0.45 g/g。  相似文献   

2.
实验主张将餐厨固体垃圾和餐厨废水分开处理,并研究微生物燃料电池(MFC)作为餐厨废水和堆肥渗滤液处理工艺的可行性,通过调节不同的有机负荷,分析其生物产电的潜力和处理效率。对于餐厨废水而言,3 000 mg/L是较为理想的处理浓度,输出电压最高,始终维持在0.5 V以上;高于此浓度时电压输出特性与底物浓度呈现反相关,输出电压略低于0.5 V。极化曲线,电化学阻抗分析等也都表明3 000 mg/L是较为理想的处理浓度。而且在各种浓度下经MFC处理后的餐厨废水去除率均在90%左右,出水COD均低于400 mg/L。至于堆肥渗滤液,虽然在产电性能、去除效果上较餐厨废水稍差一些,但整体上与餐厨废水呈现出相似的规律。以上结果表明,餐厨垃圾中的废水可以通过MFC有效的去除和实现能量的回收。  相似文献   

3.
采用混凝-两级厌氧/缺氧/好氧-膜生物反应器(A3-MBR)处理实际餐厨垃圾发酵废液,通过对运行参数进行优化确定最优工况,并考察其在该条件下长期运行的处理效果。结果表明,混凝预处理的最适pH为8,最佳混凝剂投加量为1 000 mg·L~(-1)。A3-MBR系统在最优运行条件:总HRT为110 h,回流比为200%,进水COD负荷控制在2.3~3.6 g·(L·d)-1下可稳定运行。当系统进水COD、TN、NH3-N和TP浓度分别为(10 984±383)、(335.9±16.2)、(209.1±6.7)和(37.2±2.3)mg·L~(-1)时,系统进水有机负荷为2.3~3.5 g·(L·d)-1,在最优条件下处理系统出水的COD、TN、NH3-N和TP分别为(202±23)、(62.1±7.1)、(0.33±0.13)和(8.3±0.9)mg·L~(-1),其去除率分别为98.2%、81.5%、99.8%和77.8%。A3-MBR系统对有机物具有良好的去除效果,厌氧段未积累挥发性脂肪酸。最终出水中溶解性有机物主要为II区芳香族蛋白质类似物,残留的挥发性有机物以酯类物质为主。  相似文献   

4.
进行了餐厨垃圾(FW)和接种污泥(Ⅰ)基于不同VS比(分别为FW/I=1,FW/I=3,FW/I=5)下的中温厌氧消化实验,对比了不同有机负荷下未添加氧化铁和添加氧化铁对餐厨垃圾厌氧消化产气的影响。结果表明,在FW/I=1时,餐厨垃圾厌氧消化体系的产气情况主要由接种污泥决定,添加氧化铁仅能在较小的程度上促进体系产甲烷能力提升;而在FW/I=3时,添加氧化铁可以帮助餐厨垃圾厌氧消化体系从低速产甲烷过程快速进入高速产甲烷,快速降解有机质实现稳定化;而对于FW/I=5时添加氧化铁可以解除由于有机负荷过高造成的酸抑制并恢复体系的产甲烷能力。因此,在实际应用厌氧消化技术处理餐厨垃圾中可以通过添加氧化铁来提高其有机负荷(OLR),提高处理效率,保证餐厨垃圾厌氧消化的正常运行和促进甲烷的产生。  相似文献   

5.
基于一级水解模型推导出含有单位可挥发性有机物理论沼气产量(ym,mg/L)与水解常数(k,d-1)组合项的动力学模型,将其应用于餐厨垃圾及其组分在厌氧消化过程中产沼气的特性规律分析,为研究厌氧消化机制提供理论基础。结果表明,除了脂肪厌氧消化拟合的R2为0.899 0,其余的均大于0.9,其中餐厨垃圾的R2为0.992 5,淀粉的R2为0.972 4。说明该模型能很好地反映厌氧消化的实际效果。厌氧消化水解速率依次为淀粉餐厨垃圾纤维素蛋白质脂肪。淀粉、餐厨垃圾、纤维素的k分别为0.198 3、0.089 7、0.013 9d-1,蛋白质、脂肪的k都小于零。单组分中淀粉lnym+lnk为4.983 6,表现出最好的产沼气特性;其次是蛋白质和纤维素,其值分别为2.157 8、2.046 6;脂肪产沼气特性最差,其值仅为0.902 4,与淀粉相比降低了81.89%;餐厨垃圾lnym+lnk为4.329 6,是淀粉的86.88%,产气特性仅次于淀粉。  相似文献   

6.
餐厨垃圾中有机物大部分以大分子的形式存在,对其进行热处理,破坏大分子有机物的存在形式,将会影响其干式厌氧发酵的过程。实验对餐厨垃圾进行了热处理(100℃),处理后将其在含固率(TS)20%、接种率25%的条件下进行高温55℃厌氧发酵。实验结果表明,热处理后,餐厨垃圾的理化性质发生显著变化,累计产气量、TS和VS的去除率均增大。当热处理时间为15 min时,餐厨垃圾的SCOD值最高,为59.49 g/L,比未处理时提高了3.3倍。同样该条件下,累计产气量也最高,为2 782.8 m L,与未处理相比累积产气量提高58.30%,第二产气高峰比未处理提前3天。各发酵瓶发酵前后TS、VS去除率的变化趋势与累计产气量的变化基本一致,累计产气量越大,TS、VS的去除率越大。  相似文献   

7.
以餐厨垃圾为发酵底物,研究不同初始p H和发酵温度对餐厨垃圾厌氧发酵制氢潜力、中间代谢产物和发酵途径的影响。结果表明,初始p H和发酵温度对餐厨垃圾厌氧发酵产氢性能及代谢途径具有显著影响,高温发酵的产氢效率优于中温发酵。55℃高温、初始p H为6时厌氧发酵产氢性能最佳,累积产气量、最大氢气含量最大,分别达到620 m L和52.45%,挥发性脂肪酸中丁酸浓度最高为6 182.96 mg·L~(-1),发酵类型以丁酸型发酵途径为主。通过初始p H和发酵温度的优化控制可以有效提高产氢微生物的底物利用效率和产氢潜能,改变厌氧发酵途径,保证厌氧发酵制氢系统高效稳定运行。  相似文献   

8.
城市餐厨垃圾前处理的工艺优化   总被引:1,自引:0,他引:1  
为提高餐厨垃圾资源化,利用自动化分选设备组合处理餐厨垃圾,考察餐厨垃圾快速减量化和资源化的可行性,对自动化分选前后餐厨垃圾成分进行分析,发现分选前其总量为243.05 t·d~(-1),TS为12.69%,VS为93.26%,分选后总量为242.00 t·d~(-1),TS为10.97%,VS为91.93%,其有机物含量稳定,利于厌氧发酵处理的工艺控制;对分选后餐厨垃圾进行厌氧发酵处理,考察其pH和NH_4~+-N变化,发现反应初期pH值出现弱酸性,NH_4~+-N浓度较低;随着反应进行,pH稳定在7.6~7.8,NH_4~+-N浓度约为1 200 mg·L~(-1)左右。最后对厌氧发酵产气量进行考察发现,反应前期受到pH、NH_4~+-N以及温度等反应条件影响,产气量和甲烷含量较低;随着实验趋于稳定,产气量为22 000 m3·d~(-1)左右,甲烷含量范围在65%~72%。结果表明,使用新型餐厨垃圾预处理设备,其分选效率较高,能提高后续厌氧发酵产气量和甲烷含量,较大程度实现餐厨垃圾资源化。  相似文献   

9.
通过投加不同浓度的纳米零价铁(NZVI)和零价铁(ZVI),考察了暗发酵制氢过程中铁离子组成和浓度变化、氢化酶和脱氢酶活性,研究了2种添加剂强化餐厨垃圾高温((55±1)℃)暗发酵制氢的作用机制。结果表明:投加NZVI和ZVI均可提高餐厨垃圾暗发酵制氢性能;当投加100 mg·L~(-1) ZVI时,产氢效果最佳,最大产氢潜力和最大产氢速率分别为425.72 mL和66.32 mL·h~(-1),是投加NZVI实验组的1.64倍和1.34倍,代谢途径是以乙醇型发酵为主的混合型发酵;在投加NZVI和ZVI后,暗发酵制氢末端产物的Fe~(2+)和Fe~(3+)浓度升高,投加300 mg·L~(-1)NZVI和100 mg·L~(-1) ZVI实验组Fe2+浓度最大,是未投加实验组的2倍和1.87倍;与反应前相比,Fe~(2+)显著升高,Fe~(3+)由于微生物利用与转化浓度降低,同时可有效提高氢化酶活性。投加100 mg·L~(-1) ZVI不仅可提高氢化酶活性,还可提高脱氢酶活性。以上结果可为提高餐厨垃圾等复杂有机废物的高效能源化提供参考。  相似文献   

10.
以小型生物电化学反应器为发酵装置,考察外加电刺激对餐厨垃圾-污泥共厌氧发酵过程中挥发性脂肪酸(volatile fatty acids,VFA)产量的影响。实验结果表明,餐厨垃圾协同污泥厌氧发酵,有利于体系中蛋白质和糖类的溶解消耗,提高VFA的产量。0.5 V微电刺激可增强厌氧体系中微生物的活性,有利于VFA的产出。第144和192小时,外加0.5V的实验组VFA浓度分别为24 342 mg·L~(-1)和21 291 mg·L~(-1),高于其他实验组,较空白分别提高了30.8%和4.1%;其组成主要是乙酸、丙酸和戊酸。发酵进行第24 h和96 h时,0.5 V微电刺激厌氧发酵体系中溶解性糖类和溶解性蛋白质分别为722.4 mg·L~(-1)和1.49 g·L~(-1),且有机物水解酸化过程中,厌氧体系内糖类先于蛋白质被消耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号