首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Construction of six large dams and reservoirs on the Missouri River over the last 50–75 years has resulted in major landscape changes and alterations in flow patterns, with implications for riparian forests dominated by plains cottonwood (Populus deltoides). We quantified changes in land cover from 1892–1950s and the 1950s–2006 and the current extent and age structure of cottonwood forests on seven segments (two reservoir and five remnant floodplain) comprising 1127 km (53 %) of the unchannelized upper two-thirds of the Missouri River. Riparian forest area declined by 49 %; grassland 61 %; shrubland 52 %; and sandbar habitat 96 %; while agricultural cropland increased six-fold and river/reservoir surface area doubled from 1892 to 2006. Net rates of erosion and accretion declined between the 1892–1950s and 1950s–2006 periods. Accretion exceeded erosion on remnant floodplain segments, resulting in declines in active channel width, particularly in 1950s–2006. Across all study segments in 2006, most cottonwood stands (67 %) were >50 years old, 22 % were 25–50 years old, and only 10 % were <25 years old. Among stands <50 years old, the higher proportion of 25–50 year old stands represents recruitment that accompanied initial post-dam channel narrowing; while declines in sandbar and shrubland area and the low proportion of stands <25 years old suggest declines in geomorphic dynamism and limited recruitment under recent river management. Future conservation and restoration efforts should focus both on limiting further loss of remnant cottonwood stands and developing approaches to restore river dynamics and cottonwood recruitment processes.  相似文献   

2.
The Barataria Basin, Louisiana, USA, is an extensive wetland and coastal estuary system of great economic and intrinsic value. Although high rates of wetland loss along the coastal margin of the Barataria Basin have been well documented, little information exists on whether freshwater wetlands in the upper basin have changed. Our objectives were to quantify land-cover change in the upper basin over 20 years from 1972–1992 and to determine land-cover transition rates among land-cover types. Using 80-m resolution Landsat MSS data from the North American Landscape Characterization (NALC) data archive, we classified images from three time steps (1972, 1985, 1992) into six land-cover types: agriculture, urban, bottomland hardwood forest, swamp forest, freshwater marsh, and open water. Significant changes in land cover occurred within the upper Barataria Basin over the study period. Urban land increased from 8% to 17% of the total upper basin area, primarily due to conversions from agricultural land, and to a lesser degree, bottomland forest. Swamp forest increased from 30% to 41%, associated with conversions from bottomland hardwood forest and freshwater marsh. Overall, bottomland forest decreased 38% and total wetland area increased 21%. Within the upper Barataria, increases in total wetland area may be due to land subsidence. Based on our results, if present trends in the reduction of bottomland forest land cover were to continue, the upper Barataria Basin may have no bottomland hardwood forests left by the year 2025, as it is subjected to multiple stressors both in the higher elevations (from urbanization) and lower elevations (most likely from land subsidence). These results suggest that changes in the upper freshwater portions of coastal estuaries can be large and quite different from patterns observed in the more saline coastal margins.  相似文献   

3.
Evans, Daniel M., C. Andrew Dolloff, W. Michael Aust, and Amy M. Villamagna, 2012. Effects of Eastern Hemlock Decline on Large Wood Loads in Streams of the Appalachian Mountains. Journal of the American Water Resources Association (JAWRA) 48(2): 266‐276. DOI: 10.1111/j.1752‐1688.2011.00610.x Abstract: Eastern hemlock (Tsuga canadensis), a foundation species important to riparian forests of the Appalachian Mountains, is in decline due to the hemlock woolly adelgid (HWA) (Adelges tsugae). The effect of this insect on large wood (LW) production and recruitment to streams is largely unknown. We measured LW load, riparian forest composition, and T. canadensis health in 47 streams from Maine to Alabama and developed a conceptual model that frames the expected forest stand and instream LW response to the disturbance caused by HWA. In stands with HWA, 24.3% of the overstory T. canadensis basal area was stressed and 7.5% was dead, whereas only 3.0% was stressed and 2.0% was dead in stands without HWA. Mean T. canadensis effective LW load was 0.20 m3/100 m2 in streams with adjacent stands infested by HWA, almost three times higher than in streams flowing through uninfested stands (p = 0.048). Higher frequencies of LW were found at streams with HWA present and there was a positive association between the percent of dead T. canadensis and T. canadensis LW load (ρ = 0.4468; p = <0.0001). Greater total LW loads were associated with higher stream gradients, lesser bankfull widths, and streams at lower latitudes. Our research supports the hypothesis that HWA infestation of T. canadensis in riparian forest stands has increased LW loads in streams. This episodic disturbance to the riparian forest overstory may have lasting impacts on aquatic ecosystem structure and function.  相似文献   

4.
Comparative studies on plant species richness, endemism, floristic composition, and structure between protected and unprotected forests are few in the Eastern Arc Mountains, one of the most biodiverse ecosystems in Africa. This study from one mountain range, the East Usambaras, examines floristic and structural tree data from 41–0.5 ha plots in four types of Eastern Arc forest: active agroforests, recently abandoned agroforests, mature secondary forest, and natural forest. Active agroforests had significantly lower tree species richness, endemic species richness, and stand density compared to natural and mature secondary forest. Recently abandoned agroforests contained a higher tree species richness, density, and tree height than active agroforests. Active and abandoned agroforests were dominated by an invasive tree, Maesopsis eminii. This tree species makes up a large percentage of the stems in active agroforests (26%), recently abandoned agroforests (32%), and in the canopy of mature secondary forests ∼ 30 years post logging (30%). Through time the increasing dominance of this non-native tree in active agroforests is a concern when considering the role of agroforests in a landscape scale conservation strategy.  相似文献   

5.
To facilitate forest planning and management on National Wildlife Refuges, we synthesized multiple data sources to describe land ownership patterns, land cover, landscape pattern, and changes in forest composition for four ecoregions and their associated refuges of the Upper Midwest. We related observed patterns to ecological processes important for forest conservation and restoration, with specific attention to refuge patterns of importance for forest landbirds of conservation priority. The large amount of public land within the ecoregions (31–80%) suggests that opportunities exist for coarse and meso-scale approaches to conserving and restoring ecological processes affecting the refuges, particularly historical fire regimes. Forests dominate both ecoregions and refuges, but refuge forest patches are generally larger and more aggregated than in associated ecoregions. Broadleaf taxa have increased in dominance in the ecoregions and displaced fire-dependent taxa such as pine (Pinus spp.) and other coniferous species; these changes in forest composition have likely also affected refuge forests. Despite compositional changes, larger forest patches on refuges suggests that they may provide better habitat for area-sensitive forest landbirds of mature, compositionally diverse forests than surrounding lands if management continues to promote increased patch size. We reason that although fine-scale research and monitoring for species of conservation priority is important, broad scale (ecoregional) assessments provide crucial context for effective forest and wildlife management in protected areas.  相似文献   

6.
Over the past century, channelization, agricultural tiling, and land use changes have resulted in significant stream channel degradation of the Cache River in southern Illinois. With the increasing interest in restoration of the watershed's bottomland forests and swamps, we sought to characterize geomorphic change over the past 110 years to inform restoration and management. A previously surveyed stretch of river was resurveyed in the fall of 2011, following a record flood in the spring of that year. Results suggest that the slope of the channel in this section of the river has increased 345% between 1903 and 1972 (p < 0.01), but has not changed significantly since (p = 0.12). Within that same time period, bank heights increased between 1 and 7 m and bed elevation decreased between 1 and 5 m. Changes in resurveyed cross sections appear to be primarily due to recent flood scour. It appears as though early 20th Century stream channel modifications had immediate effects on the geomorphology of the channel; however, channel geometry is now at or near equilibrium. This case study of the Cache River watershed demonstrates how and why successful restoration will require integration of geomorphic processes of the system.  相似文献   

7.
Long-term human impacts are considered to be the prime cause of unsustainable forest exploitation in Ethiopia. Yet there exist well-established systems and a wealth of local experience in maintaining and managing forests. This study explores the trends and driving forces of deforestation plus traditional practices regarding sustainable forest use and management in the Chencha and Arbaminch areas, Southern Ethiopia. Satellite image analysis (images from 1972, 1984 and 2006) combined with field surveys were used to detect and map changes in forest cover. Household interviews and group discussions with experienced and knowledgeable persons were also employed. The results show a 23 % decline in forest cover between 1972 and 2006 with the most significant change from 1986 to 2006. Change was greatest in the lowlands and remarkable episodic forest changes also occurred, suggesting nonlinear spatial and temporal forest cover dynamics. According to farmers, the main driver of deforestation is agricultural land expansion in response to local population increases and a decline in agricultural production. Growing local and regional fuel wood demand is another chief cause. Despite these issues, remarkable relicts of natural forests remain and trees on farmland, around homesteads and on fields in every village are basic elements of farm activities and social systems. This demonstrates the effect of cumulative traditional knowledge and long-term local experience with forest management and preservation. Therefore, these practices should be promoted and advanced through the integration of local knowledge and forest management practices in the design and implementation of sustainable environmental planning and management.  相似文献   

8.
Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impacts from hemlock loss in GSMNP, we paired hardwood- and hemlock-dominated streams to examine differences in water temperature, nitrate concentrations, pH, discharge, and available photosynthetic light. We used a Geographic Information System (GIS) to identify stream pairs that were similar in topography, geology, land use, and disturbance history in order to isolate forest type as a variable. Differences between hemlock- and hardwood-dominated streams could not be explained by dominant forest type alone as forest type yields no consistent signal on measured conditions of headwater streams in GSMNP. The variability in the results indicate that other landscape variables, such as the influence of understory Rhododendron species, may exert more control on stream conditions than canopy composition. The results of this study suggest that the replacement of hemlock overstory with hardwood species will have minimal impact on long-term stream conditions, however disturbance during the transition is likely to have significant impacts. Management of riparian forests undergoing hemlock decline should, therefore, focus on facilitating a faster transition to hardwood-dominated stands to minimize long-term effects on water quality.  相似文献   

9.
The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25–30 years old) was characterized by dense and healthy populations of pioneer species (Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25–30 years old) were characterized by declining and sparse P. nigraS. albaTamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.  相似文献   

10.
Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990–2000 (DR of evergreen tropical rain forest=4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2–10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.  相似文献   

11.
Modern timber management practices often influence forage production for elk (Cervus elaphus) on broad temporal and spatial scales in forested landscapes. We incorporated site-specific information on postharvesting forest succession and forage characteristics in a simulation model to evaluate past and future influences of forest management practices on forage values for elk in a commercially managed Douglas fir (Pseudotsuga menziesii, PSME)-western hemlock (Tsuga heterophylla, TSHE) forest in western Washington. We evaluated future effects of: (1) clear-cut logging 0, 20, and 40% of harvestable stands every five years; (2) thinning 20-year-old Douglas fir forests; and (3) reducing the harvesting cycle from 60 to 45 years. Reconstruction of historical patterns of vegetation succession indicated that forage values peaked in the 1960s and declined from the 1970s to the present, but recent values still were higher than may have existed in the unmanaged landscape in 1945. Increased forest harvesting rates had little short-term influence on forage trends because harvestable stands were scarce. Simulations of forest thinning also produced negligible benefits because thinning did not improve forage productivity appreciably at the stand level. Simulations of reduced harvesting cycles shortened the duration of declining forage values from approximately 30 to 15 years. We concluded that simulation models are useful tools for examining landscape responses of forage production to forest management strategies, but the options examined provided little potential for improving elk forages in the immediate future.  相似文献   

12.
Pine plantations are an alternative to marginal agriculture in many countries, and are often presented as an option that improves biodiversity. However, these plantations can have adverse environmental effects if improperly managed. To evaluate the effect of forest management practices on biodiversity, the diversity, species richness, dominance and frequency of understory woody plant species in different forests of the Basque Country (northern Spain) were compared. Plantations of exotic conifers (Pinus radiata [D.] Don) of different ages were compared with deciduous forests of Quercus robur L. and Fagus sylvatica L. The effects of different types and intensities of management were taken into account. The differences observed were mainly conditioned by the intensity of forestry management, although the response varied according to forest type and age. In unmanaged pine plantations, the diversity and species richness of the understory increased rapidly after planting (while dominance decreased), remained stable in the intermediate age range, and reached a maximum in plantations more than 25 years of age. Management practices resulted in decreased understory diversity and species richness, as well as greater dominance. This was more pronounced in younger than in older stands. Moderate management, however, favored a greater diversity of the understory in deciduous forests. The species composition of the plantations and deciduous forests were different, the latter having a wider range of characteristic species. Knowledge of how forestry practices influence biodiversity (in terms of diversity, richness, dominance, and species composition) may allow predictions to be made about the diversity achievable with different management systems.  相似文献   

13.
Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet multiple goals relating to sensitive species, fuels reduction, forest products, water, carbon storage, and ecosystem restoration. Using the Kings River area of the Sierra Nevada as a case study, we create areas of topographically-based units, Landscape Management Units (LMUs) using a three by three matrix (canyon, mid-slope, ridge-top and northerly, southerly, and neutral aspects). We describe their size, elevation, slope, aspect, and their difference in inherent wetness and solar radiation. We assess the predictive value and field applicability of LMUs by using existing data on stand conditions and two sensitive wildlife species. Stand conditions varied significantly between LMUs, with canyons consistently having the greatest stem and snag densities. Pacific fisher (Martes pennanti) activity points (from radio telemetry) and California spotted owl (Strix occidentalis occidentalis) nests, roosts, and sightings were both significantly different from uniform, with a disproportionate number of observations in canyons, and fewer than expected on ridge-tops. Given the distinct characteristics of the LMUs, these units provide a relatively simple but ecologically meaningful template for managers to spatially allocate forest treatments, thereby meeting multiple National Forest objectives. These LMUs provide a framework that can potentially be applied to other fire-dependent western forests with steep topographic relief.  相似文献   

14.
Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.  相似文献   

15.
To examine ownership and protection status of forests with high-biomass stores (>200 Mg/ha) in the Pacific Northwest (PNW) region of the United States, we used the latest versions of publicly available datasets. Overlay, aggregation, and GIS-based computation of forest area in broad biomass classes in the PNW showed that the National Forests contained the largest area of high-biomass forests (48.4 % of regional total), but the area of high-biomass forest on private lands was important as well (22.8 %). Between 2000 and 2008, the loss of high-biomass forests to fire on the National Forests was 7.6 % (236,000 ha), while the loss of high-biomass forest to logging on private lands (364,000 ha) exceeded the losses to fire across all ownerships. Many remaining high-biomass forest stands are vulnerable to future harvest as only 20 % are strictly protected from logging, while 26 % are not protected at all. The level of protection for high-biomass forests varies by state, for example, 31 % of all high-biomass federal forests in Washington are in high-protection status compared to only 9 % in Oregon. Across the conterminous US, high-biomass forest covers <3 % of all forest land and the PNW region holds 56.8 % of this area or 5.87 million ha. Forests with high-biomass stores are important to document and monitor as they are scarce, often threatened by harvest and development, and their disturbance including timber harvest results in net C losses to the atmosphere that can take a new generation of trees many decades or centuries to offset.  相似文献   

16.
The majority of untouched natural boreal forests have been regenerated through large catastrophes, occurring by intervals between 50 and 100 years. Storm and fire will open the landscape, result in a huge amount of dead or dying trees and let the pioneer tree species germinate. These processes are the guideline for Finnish forest management today.The main focus by maintaining the biodiversity in Finnish boreal forest zone is directed to managed forests. Nature-orientated silviculture on stand level is practised. The site type classification, a reflection of the modern concept of biodiversity and developed by Cajander early in 1900s, on the basis of natural vegetation composition of the site, has the central role by choosing tree species, regeneration methods and thinning procedure, and reflects also on the site productivity. The small size of stands, the abundance of natural seedlings in planted stands and the popularity of mixed stands have a positive impact on biodiversity of forests. The protection of small-sized valuable habitats in commercially managed stands, the leaving of retention trees standing and lying in the forest in all phases of the rotation, are activities made for biodiversity. Many insects and fungi are adapted to catastrophes and so they can survive in single stems left on regeneration areas. Maintaining the biodiversity in multifunctional forests is also supported by the new forest legislation and by the criteria of Finnish Forest Certification System.  相似文献   

17.
Knight, Kris W., Richard C. Schultz, Cathy M. Mabry, and Thomas M. Isenhart, 2010. Ability of Remnant Riparian Forests, With and Without Grass Filters, to Buffer Concentrated Surface Runoff. Journal of the American Water Resources Association (JAWRA) 46(2):311-322. DOI: 10.1111/j.1752-1688.2010.00422.x Abstract: Riparian forest buffers established according to accepted conservation practice standards have been recommended as one of the most effective tools for mitigating nonpoint source pollution. The midwestern United States is characterized by many kilometers of narrow, naturally occurring forests along streams. However, little is known about the relative effectiveness of these remnant forests compared with these newly established buffers. This study compared the ability of naturally occurring remnant forests with and without adjacent planted grass filters to buffer concentrated flow paths (CFPs) originating in crop fields along first- and second-order streams in three northeast Missouri watersheds. Remnant forests breached by runoff through CFPs were narrower than those that dispersed 100% of the CFPs. Remnant forests with adjacent grass buffers were nearly twice the width as those without grass filters. We also found that CFPs, which developed within remnant forests and at the base of in-field grass waterways, were potential sources of sediments to streams. Methods to mitigate these CFPs warrant further investigation. Our study suggests that although these natural remnant forests provide substantial buffering capacity, both improved management and/or the addition of an adjacent grass filter would improve water quality by reducing sediment loss to streams. Inferences can be used to inform the design and management of similar conservation buffer systems within the region.  相似文献   

18.
This study provides timber growers with silvicultural guidelines for establishing and maintaining nest-tree habitat for native black sparrowhawks (Accipiter melanoleucus) in commercial planted forests in South Africa. In this country, exotic eucalypts and pines are planted principally for pulpwood and sawlog production. Nineteen nests were sampled in indigenous forests and 58 nests in exotic forests. Although mean nest heights differed between indigenous and exotic trees, in all trees, nests were positioned, on average, at 64% of tree height. Black sparrowhawks nested near stand edges, probably seeking a compromise between nesting adjacent to open hunting habitat and selecting an insulated tree from within the forest. Black sparrowhawks nested in tall trees ( X- = 18-33 m for different tree species classes) with a large diameter (>60 cm). Unfortunately, the South African pulpwood and sawlog industry employ short rotations (<16 years) and high tree densities (>700 trees/ha) that do not allow the trees to attain the characteristics suitable for black sparrowhawk nesting sites. Eucalypt and pine nest stands must be of 25 x 25 m minimum size and incorporate 10 trees at minimum heights of 21 and 18 m and diameters of 37 and 35 cm, respectively. If such nest-tree stands are set aside as islands in a sea of commercial forests, and black sparrowhawks and other forest raptors nest in them, timber growers will improve the tree-nesting raptor diversity of planted forests. If, however, these raptors prey upon species of conservation importance, the management recommendations could be reversed to limit the potential for predation.  相似文献   

19.
Urbanization and the Loss of Resource Lands in the Chesapeake Bay Watershed   总被引:3,自引:0,他引:3  
We made use of land cover maps, and land use change associated with urbanization, to provide estimates of the loss of natural resource lands (forest, agriculture, and wetland areas) across the 168,000 km2 Chesapeake Bay watershed. We conducted extensive accuracy assessments of the satellite-derived maps, most of which were produced by us using widely available multitemporal Landsat imagery. The change in urbanization was derived from impervious surface area maps (the built environment) for 1990 and 2000, from which we estimated the loss of resource lands that occurred during this decade. Within the watershed, we observed a 61% increase in developed land (from 5,177 to 8,363 km2). Most of this new development (64%) occurred on agricultural and grasslands, whereas 33% occurred on forested land. Some smaller municipalities lost as much as 17% of their forest lands and 36% of their agricultural lands to development, although in the outlying counties losses ranged from 0% to 1.4% for forests and 0% to 2.6% for agriculture. Fast-growing urban areas surrounded by forested land experienced the most loss of forest to impervious surfaces. These estimates could be used for the monitoring of the impacts of development across the Chesapeake Bay watershed, and the approach has utility for other regions nationwide. In turn, the results and the approach can help jurisdictions set goals for resource land protection and acquisition that are consistent with regional restoration goals.  相似文献   

20.
A possible response to increasing atmospheric CO2 concentration is to attempt to increase the amount of carbon stored in terrestrial vegetation. One approach to increasing the size of the terrestrial carbon sink is to increase the growth of forests by utilizing intensive forest management practices. This article uses data from the literature and from forest growth and yield models to analyze the impact of three management practices on carbon storage: thinning, fertilization, and control of competing vegetation. Using Douglas-fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda) as example species, results from experiments with computer simulation models suggest that, for these two species, thinning generally does not increase carbon storage and may actually cause a decrease. The exception is thinning of very dense young stands. Fertilization generally increases carbon storage, although the response can be quite variable. The largest gains in carbon storage are likely to come from fertilizing lower-quality sites and from fertilizing thinned or less dense stands. Forests usually show increased growth in response to fertilization over a wide range of ages. Simulation of the growth of loblolly pine indicates that controlling competing vegetation at an early age helps to maximize stand growth and carbon storage. The research described in this article has been funded by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through contract number 68-C8-0006 to NSI Technology Inc. It has been subjected to the agency’s peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号