首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
液化石油气(LPG)泄漏扩散受风速、温度、压力等因素影响,其中风力作用对泄漏扩散过程的影响最明显.为研究风速对LPG球罐泄漏扩散的影响规律,以1000 m3球罐为原型,首先建立LPG球罐泄漏扩散数学模型并进行理论计算,其次建立不同风速下LPG球罐泄漏扩散的FLUENT数值模型,结合理论计算对数值模拟结果进行验证.结果表...  相似文献   

2.
黄拴雷 《安全》2017,38(9):9-12
为了减少液化石油气爆炸事故的发生,采用ALOHA程序对液化石油气钢瓶泄漏进行研究,对喷射火灾、蒸汽云爆炸、沸腾液体蒸汽云爆炸这三种事故情节进行模拟计算,通过定量计算得到每种事故情节危害的影响范围。结果表明,液化石油气钢瓶泄漏所产生的事故情节不同,对造成人员伤亡、财产损失等严重的事故后果也有差异及在考虑热辐射对人的伤害程度时,不仅要考虑暴露时间,还要考虑暴露范围的大小。  相似文献   

3.
基于液化石油气的特点,建立了有限空间内部发生泄漏扩散的物理模型,模拟了液化石油气泄漏扩散的过程,通过模拟结果分析其扩散规律,并对比当泄漏孔形状分别为正方形、圆形、三角形时液化石油气扩散过程的变化以及对所形成的的爆炸危险区域的影响。监测点1(0.8,0.3,0),点2(2.4,0.3,2.5),点3(0,0.3,1.5),点4(2,0.3,3)的浓度变化,找出报警器的最佳安放位置。结果表明:泄漏时间相同,丙烷的扩散范围从大到小依次为三角形孔口、圆形孔口、正方形孔口,爆炸危险区域也与泄漏孔形状有关,三角形孔口的危险区域范围最广,其次是圆形泄漏孔,正方形泄漏孔的范围最小,点1处的丙烷浓度增长幅度较大,浓度较高,可以更早达到报警浓度。  相似文献   

4.
液化石油气(LPG)站安全距离已成为重要的社会安全问题,采用基于风险的方法确定安全距离逐渐成为一种趋势。以个体自然死亡概率为基础,确定液化石油气站个体风险标准。采用小孔泄漏、中孔泄漏、大孔泄漏和完全破裂四种泄漏模式确定泄漏场景,以事件树形式给出泄漏物质连续释放和瞬时释放的各种事故后果,针对每种泄漏场景计算工艺单元相应的泄漏频率,采用时间因子进行修正。将后果与泄漏频率集合与一体,得出液化石油气站的安全距离。合理的安全距离对于液化石油气站工艺安全事故的预防和安全平稳运行起到重要作用。  相似文献   

5.
以C02为对象,对室内空间气体连续泄漏扩散过程进行试验研究,并对室内CO2气体泄漏扩散的均一质量浓度模型、两厢质量浓度模型和室内半球质量浓度模型进行研究.将理论模型计算值与不同位置测量点的试验数据进行比较分析.3种质量农度模型均表示区域质量浓度的变化,理论模型计算值与试验数据均有些偏差;远离泄漏源处,偏差较小.室内空间不同位置3个模型预测值相对大小会发生变化.对于泄漏源附近及低于泄漏源处,3种质量浓度模型预测结果误差较大;对于高于泄漏源的位置,模型预测结果较好,然而质量浓度均出现振荡不稳定的现象.由于重力沉降作用,下部空间气体质量浓度较大,上部空间气体质量浓度较小.泄漏刚开始阶段,远离泄漏源处,试验测试值与理论模型值相比有一个廷滞期,理论预测值偏差较大.  相似文献   

6.
LPG船液货泄漏事故风险评估系统研究   总被引:2,自引:0,他引:2  
通过对液化石油气(LPG)船舶液货舱泄漏事故危险度因素分析,建立液化气液体货物泄漏源强、蒸气释放源强和蒸气扩散计算模型,并制定泄漏事故风险评价流程,基于VB语言编写泄漏事故风险评估系统。利用该系统能够计算得出泄漏事故发生后蒸发气在不同时刻不同区域的蒸发气浓度、爆炸或火灾后对生命财产的伤害半径以及伤害程度等相关参数。对某航行状态下的LPG实船进行模拟分析,结果表明能够对LPG船舶泄漏事故进行有效风险评估,并能对船舶航行安全应急预案的制定和事故后海事鉴定提供一定的技术帮助。  相似文献   

7.
采用情景构建方法,建立LPG(液化石油气)储罐泄漏起火事故情景,依据PHAST定量分析软件,对LPG储罐泄漏后果进行数据分析,计算喷射火热辐射及泄漏气体扩散范围,应用这些数据对LPG储罐泄漏事故进行情景推演,并对应急救援过程中所必须的人员、物资、技术等需求进行分析与评估,得出企业在应对巨灾方面存在的不足。研究成果对企业的应急能力建设规划具有一定的指导意义。  相似文献   

8.
在液化石油气安全使用须知中有这样的规定 :严禁在地下室使用液化石油气。这是因为 :第一 ,同体积的液化石油气比空气大约重 0 5倍。如果在地下室使用液化石油气 ,一旦泄漏出来 ,就很容易在较低处聚集。液化石油气长时间聚集 ,可能形成爆炸性混合物 ,遇到明火就会爆炸。第二 ,一般地下室里空气流通都不太好 ,泄漏出来的液化石油气不容易扩散出去。这样一来 ,液化石油气也会不断聚集 ,有发生爆炸的危险。第三 ,由于地下室里空气流通不好 ,在使用液化石油气时 ,空气不容易及时补充进去 ,因而会造成氧气供应不足。由于缺少氧气 ,可能使液化石…  相似文献   

9.
液化石油气槽车是公路运输液化石油气的专用液车。其运输的液化石油气饱和蒸气压高(50℃时为1.6兆帕)闪点、燃点低,爆炸极限范围大约为2%-10%。一量发生泄漏事故,泄漏的液化气能沿地面迅速扩散,在大范围内形成爆炸性混合物,1千克液化气全部气化后体积可达5000升。若以2%浓度计算可组成25立方米爆炸性气体,其爆炸威力相当于10千克TNT炸药的爆炸当量。爆炸形成的冲击波不仅会使建筑物倒塌,而且瞬间形成大体积空间火焰,破坏力极强。近年来液化石油气槽车的泄漏事故时有发生,并给人民群众的生命财产带来了威胁。  相似文献   

10.
液化石油气槽车是公路运输液化石油气的专用汽车。其运输的液化石油气饱和蒸气压高 (5 0℃时为1 6兆帕 )闪点、燃点低 ,爆炸极限范围大约为 2 %~ 10 %。一旦发生泄漏事故 ,泄漏的液化气能沿地面迅速扩散 ,在大范围内形成爆炸性混合物 ,1千克液化气全部气化后体积可达 5 0 0 0升。若以 2 %浓度计算可组成 2 5立方米爆炸性气体 ,其爆炸威力相当于 10千克TNT炸药的爆炸当量。爆炸形成的冲击波不仅会使建筑物倒塌 ,而且瞬间形成大体积空间火焰 ,破坏力极强。近年来液化石油气槽车的泄漏事故时有发生 ,并给人民群众的生命财产带来了威胁。液…  相似文献   

11.
针对目前城镇埋地管道天然气泄漏研究模拟工况简单、可信性较低等问题,考虑障碍物对环境风场的影响,利用计算流体力学(CFD)软件建立天然气管道三维泄漏模型,将模拟过程分为环境风场的稳态模拟和管道泄漏扩散的瞬态模拟两步,分析天然气泄漏扩散规律。结果表明:在风场稳态模拟中,建筑物附近风场受干扰明显,上游形成小范围的低速滞留区,下游形成较长的尾迹。在天然气泄漏扩散瞬态模拟中,土壤层天然气受风速影响较小,气体在近地面及贴近建筑物侧积聚,扩散范围随时间逐渐趋于稳定,泄漏扩散达到稳定后表现出土壤层积聚、气云沉降、贴近建筑物积聚、气云扩散局限性的特征。风速主要影响天然气的扩散高度,对水平方向的扩散范围影响较小,风速与天然气扩散高度成反比。  相似文献   

12.
为了研究埋地燃气管道泄漏燃气在非稳态泄漏条件下的扩散行为,基于燃气管道非稳态泄漏大孔模型,应用CFD分别求解土壤和大气扩散方程,通过丙烷地面扩散通量耦合了土壤和大气环境,进行了泄漏扩散的数值模拟,所得模拟计算结果与地上泄漏扩散数值模拟结果进行了对比分析。研究结果表明:耦合模拟条件下,风速仍是影响丙烷扩散距离和高度的主要因素;温度和相对湿度对丙烷扩散有相对较小的影响;与埋地泄漏相比,不同条件下地上泄漏的扩散距离和扩散高度均有误差,水平扩散距离误差普遍较大,扩散高度个别情况下误差较大;地上泄漏条件下的模拟结果数值偏大,对事故的预测和评估准确性会产生显著影响。  相似文献   

13.
有毒气体泄漏扩散受很多不确定性因素的影响,为了分析和评估影响毒气泄漏扩散的风速和泄漏速率的变化和不确定性,采用蒙特卡罗模拟和基于Wilks公式容许限的非参数统计法,通过抽样计算得到“95/95准则”下的毒气泄漏扩散地面浓度分布,计算了有毒气体泄漏扩散的不同风险等级的影响范围和风险概率曲线。以氨气泄漏事故为例进行实例分析,结果表明,相对于以确定性参数得出的氨气泄漏扩散浓度分布,引入参数的不确定性评估,更能贴合泄漏现场存在不确定性因素的实际情况,更有利于人员的安全和应急疏散管理。  相似文献   

14.
架空天然气管道泄漏事故后果数值模拟研究   总被引:1,自引:1,他引:0  
针对架空天然气管道泄漏引起的火灾爆炸问题,采用事件树分析泄漏扩散引起的事故后果,并在数值模拟中着重分析了模拟数学模型的选择。在三种不同泄漏孔径、两种不同风速、两种不同运行压力条件下分别应用ALHOA软件对事故后果进行数值模拟,结果表明:泄漏孔径、运行压力与危害影响范围成正比关系;在闪火和蒸气云爆炸中,风速与危害影响范围成反比关系,而风速对射流火灾的热辐射范围基本没有影响。  相似文献   

15.
为了实现对有毒推进剂泄漏扩散浓度的快速估算,对液体推进剂偏二甲肼在发射场泄漏蒸发扩散的实际情况进行理论分析,建立扩散模型,并从泄漏源、沉积效应、地面反射、大气稳定度等方面对扩散模型进行完善;应用数值模拟方法进行仿真,将数值模拟结果与实验数据、理论计算结果进行对比分析。研究结果表明:气体扩散模型与数值模拟及实验结果基本一致,但扩散模型计算结果偏小,这是由于推进剂进行了燃烧和氧化反应,扩散区域温度上升,大气稳定度降低,实际浓度更大。  相似文献   

16.
罐区气体泄漏PHOENICS数值模拟研究   总被引:1,自引:0,他引:1  
基于紊流模式理论,在考虑重力影响的基础上,建立储气罐区气体泄漏扩散数学模型,并采用计算流体力学软件PHOENICS(双曲性,抛物性或椭圆型数值求解综合编码)对该数学模型进行数值求解。在油气安全综合平台上,通过选用二氧化碳作为泄漏物,红外二氧化碳传感器采集来的实验数据与PHOENICS模拟数据进行比较,发现误差较小。同时表明,借用该软件模拟储气罐区气体泄漏的扩散问题是可行的。运用该法也能为气体泄漏、火灾方面的研究提供一条便利的捷径。研究结果还可以为液化气与毒气罐区气体泄漏事故应急处理提供参考依据,同时对罐区浓度探测点位置的安放也有重要指导意义。  相似文献   

17.
为保障天然气工业安全生产与运营,以某天然气储配厂为例,采用等效喷嘴和过程模型,利用FLACS软件对罐区高压天然气非恒定速率泄漏扩散进行数值模拟,考察环境风速及泄漏时间对气体泄漏扩散的影响。结果表明:储存压力为1.05 MPa的天然气储罐发生泄漏会产生欠膨胀射流,泄漏初期具有447.44 kJ的高动能,并在近场扩散起主导作用;在气体持续泄漏的200 s内,泄漏质量流量仅发生0.71 kg/s的变化,对泄漏扩散影响不明显,各风速条件下的泄漏会在动能稳定风场和浮力的共同作用下,使可燃气云体积及分布在一定时间内达到动态稳定状态,等效化学计量气云体积不再发生明显变化;质量流量会随着时间的增加变化会越来越明显,进行非恒定速率气体泄漏扩散的模拟,会更有利于现场情况的判断和处置;风速的增大与风向对扩散的影响成正比,与气云趋于动态稳定的时间、可燃气云分布及体积成反比。  相似文献   

18.
采用经典流体力学理论,以及计算流体力学(CFD)等方法相结合,对中缅油气 管线上具有代表性的岩鹰山隧道进行研究。用Fluent软件对岩鹰山隧道天然气管道泄漏 进行仿真模拟,利用Fluent模拟结果与泄漏源计算结果相结合,经过理论分析与数据拟 合,提出泄漏天然气充满隧道的时间计算模型,通过不同边界条件下隧道内天然气泄漏 扩散规律的模拟结果对时间模型进行验算并修正。利用计算流体力学(CFD)方法,研 究岩鹰山隧道在发生天然气泄漏事故后,单风机通风方案的效率,得出隧道通风优化方 案,方案内容包括最佳送风方式、布设水平位置、布设高度、布设间距。根据通风方案 计算结果对风机型号选取、以及隧道洞门设计提出了建议。  相似文献   

19.
为定量评估高含硫天然气开敞空间泄漏过程中风速、风向、泄漏速度、泄漏方向对毒害后果的影响,以天然气净化厂管道泄漏为例,采用正交实验设计方法设计实验场景,基于CFD进行泄漏扩散仿真实验,以吸入剂量、毒害面积、最大毒害面积到达时间、毒害体积、最大毒害体积到达时间作为毒害效应指标,分析不同因素对毒害后果的影响,并提出后果控制建议。研究结果表明:采用CFD方法进行泄漏扩散仿真能够还原泄漏扩散过程;利用正交实验进行影响因素分析可以节省实验资源、获取准确结果;风向和风速对各后果指标均比较敏感,在天然气净化厂建设过程中应着重考虑风的影响。仿真与正交实验结合的方法能够有效评估毒害后果影响因素的敏感性,可为毒害气体泄漏风险防控提供指导。  相似文献   

20.
液氯储罐一旦发生泄漏,容易在大气中快速扩散,其扩散速度受到泄漏量、外界风速等条件的影响。为了研究不同风速和泄漏量对氯气扩散规律的影响,分别在泄漏量为2 kg、5 kg,外界风速为2 m/s、5 m/s的条件下,采用Fluent软件模拟了氯气储罐瞬时泄漏后氯气质量浓度随时间的分布规律,并结合氯气的致死浓度,对氯气扩散区域最大质量浓度分布及其毒性致命损伤进行了分析。结果表明,氯气扩散初期,云团浓度较高,重气效应比较明显,随时间增加云团逐渐增大。泄漏量越大,氯气的扩散速度和致死区范围越大,毒性致命损伤时间越短;风速越大,致死区的影响距离越大,但致死区的影响时间大幅度缩短,能有效降低氯气的中毒危害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号