首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Thoracic deformation under an applied load is an established indicator of injury risk, but the force required to achieve an injurious level of deformation currently is not understood adequately. This article evaluates how two potentially important factors, loading condition and muscle tensing, affect the structural response of the dynamically loaded thorax. Structural models of two human cadaver thoraxes and two porcine thoraxes were used to quantify the effects. The human cadavers, which represent anthropometric extremes, were subjected to anterior loading from (1) a 5.1-cm-wide belt oriented diagonally (i.e., seatbelt-like loading), (2) a 15.2-cm-diameter rigid hub, and (3) a 20.3-cm-wide belt oriented laterally (i.e., a distributed load). A structural model having the mathematical formulation of a quasilinear viscoelastic material model was used to model the elastic and viscous response, with ramp-hold tests used to determine the model coefficients. The effect of thoracic musculature was assessed using similar ramp-hold tests on the porcine subjects, each with and without forced muscle contraction. Even maximally contracted thoracic musculature is shown to have a minimal effect on the response, with similar elastic and viscous characteristics exhibited by each subject regardless of muscle tone. The elastic response is shown to be approximately a factor of three stiffer for diagonal belt loading and for this distributed loading condition than for the hub loading, indicating that the response is influenced most by the particular anatomical structures that are engaged and, secondarily, by the area of load application. Specifically, shoulder involvement is shown to have a strong influence. The force relaxation is found to be pronounced, but insensitive to the loading condition, with long-time force relaxation coefficients (G) in the range of 0.1 to 0.3. The findings of this study provide restraint-specific guidelines for the force-deflection characteristics of both physical and computational thoracic models.  相似文献   

2.
Objectives: This paper quantifies pediatric thoracoabdominal response to belt loading to guide the scaling of existing adult response data and to assess the validity of a juvenile porcine abdominal model for application to the development of physical and computational models of the human child. Methods: Table-top belt-loading experiments were performed on 6, 7, and 15 year-old pediatric post-mortem human subjects (PMHS). Response targets are reported for diagonal belt and distributed loading of the anterior thorax and for horizontal belt loading of the abdomen. Results: The pediatric PMHS exhibited abdominal response similar to the swine, including the degree of rate sensitivity. The thoraces of the PMHS were as stiff as, or slightly more stiff than, published adult corridors. Conclusions: An assessment of age-related changes in thoracic stiffness suggests that the effective stiffness of the chest increases through the fourth decade of life and then decreases, resulting in stiffness values similar for children and elderly adults.  相似文献   

3.
The effect of muscle activation on neck response   总被引:3,自引:0,他引:3  
Prevention of neck injuries due to complex loading, such as occurs in traffic accidents, requires knowledge of neck injury mechanisms and tolerances. The influence of muscle activation on outcome of the injuries is not clearly understood. Numerical simulations of neck injury accidents can contribute to increase the understanding of injury tolerances. The finite element (FE) method is suitable because it gives data on stress and strain of individual tissues that can be used to predict injuries based on tissue level criteria.The aim of this study was to improve and validate an anatomically detailed FE model of the human cervical spine by implement neck musculature with passive and active material properties. Further, the effect of activation time and force on the stresses and strains in the cervical tissues were studied for dynamic loading due to frontal and lateral impacts.The FE model used includes the seven cervical vertebrae, the spinal ligaments, the facet joints with cartilage, the intervertebral disc, the skull base connected to a rigid head, and a spring element representation of the neck musculature. The passive muscle properties were defined with bilinear force-deformation curves and the active properties were defined using a material model based on the Hill equation. The FE model's responses were compared to volunteer experiments for frontal and lateral impacts of 15 and 7 g. Then, the active muscle properties where varied to study their effect on the motion of the skull, the stress level of the cortical and trabecular bone, and the strain of the ligaments.The FE model had a good correlation to the experimental motion corridors when the muscles activation was implemented. For the frontal impact a suitable peak muscle force was 40 N/cm2 whereas 20 N/cm2 was appropriate for the side impact. The stress levels in the cortical and trabecular bone were influenced by the point forces introduced by the muscle spring elements; therefore a more detailed model of muscle insertion would be preferable. The deformation of each spinal ligament was normalized with an appropriate failure deformation to predict soft tissue injury. For the frontal impact, the muscle activation turned out to mainly protect the upper cervical spine ligaments, while the musculature shielded all the ligaments disregarding spinal level for lateral impacts. It is concluded that the neck musculature does not have the same protective properties during different impacts loadings.  相似文献   

4.
Abstract

Objective: The introduction of integrated safety technologies in new car models calls for an improved understanding of the human occupant response in precrash situations. The aim of this article is to extensively study occupant muscle activation in vehicle maneuvers potentially occurring in precrash situations with different seat belt configurations.

Methods: Front seat male passengers wearing a 3-point seat belt with either standard or pre-pretensioning functionality were exposed to multiple autonomously carried out lane change and lane change with braking maneuvers while traveling at 73?km/h. This article focuses on muscle activation data (surface electromyography [EMG] normalized using maximum voluntary contraction [MVC] data) obtained from 38 muscles in the neck, upper extremities, the torso, and lower extremities. The raw EMG data were filtered, rectified, and smoothed. All muscle activations were presented in corridors of mean?±?one standard deviation. Separate Wilcoxon signed ranks tests were performed on volunteers’ muscle activation onset and amplitude considering 2 paired samples with the belt configuration as an independent factor.

Results: In normal driving conditions prior to any of the evasive maneuvers, activity levels were low (<2% MVC) in all muscles except for the lumbar extensors (3–5.5% MVC). During the lane change maneuver, selective muscles were activated and these activations restricted the sideway motions due to inertial loading. Averaged muscle activity, predominantly in the neck, lumbar extensor, and abdominal muscles, increased up to 24% MVC soon after the vehicle accelerated in lateral direction for all volunteers. Differences in activation time and amplitude between muscles in the right and left sides of the body were observed relative to the vehicle’s lateral motion. For specific muscles, lane changes with the pre-pretensioner belt were associated with earlier muscle activation onsets and significantly smaller activation amplitudes than for the standard belt (P?<?.05).

Conclusions: Applying a pre-pretensioner belt affected muscle activations; that is, amplitude and onset time. The present muscle activation data complement the results in a preceding publication, the volunteers’ kinematics and the boundary conditions from the same data set. An effect of belt configuration was also seen on previously published volunteers’ kinematics with lower lateral and forward displacements for head and upper torso using the pre-pretensioner belt versus the standard belt. The data provided in this article can be used for validation and further improvement of active human body models with active musculature in both sagittal and lateral loading scenarios intended for simulation of some evasive maneuvers that potentially occur prior to a crash.  相似文献   

5.
There is little known data characterizing the biomechanical responses of the human head and neck under direct head loading conditions. However, the evaluation of the appropriateness of current crash test dummy head-neck systems is easily accomplished. Such an effort, using experimental means, generates and provides characterizations of human head-neck response to several direct head loading conditions. Low-level impact loads were applied to the head and face of volunteers and dummies. The resultant forces and moments at the occipital condyle were calculated. For the volunteers, activation of the neck musculature was determined using electromyography (EMG). In addition, cervical vertebral motions of the volunteers have been taken by means of X-ray cineradiography. The Ethics Committee of Tsukuba University approved the protocol of the experiments in advance. External force of about 210 N was applied to the head and face of five volunteers with an average age of 25 for the duration of 100 msec or so, via a strap at one of four locations in various directions: (1) an upward load applied to the chin, (2) a rearward load applied to the chin without facial mask, (3) a rearward load applied to the chin with the facial mask, and (4) a rearward load applied to the forehead. The same impact force as those for the human volunteers was also applied to HY-III, THOR, and BioRID. We found that cervical vertebral motions differ markedly according to the difference in impact loading condition. Some particular characteristics are also found, such as the flexion or extension of the upper cervical vertebrae (C0, C1, and C2) or middle cervical vertebrae (C3-C4), showing that the modes of cervical vertebral motions are markedly different among the different loading conditions. We also found that the biofidelity of dummies to neck response characteristics of the volunteers at the low-level impact loads is in the order of BioRID, THOR, and HY-III. It is relevant in this regard that the BioRID dummy was designed for a low-severity impact environment, whereas THOR and HY-III were optimized for higher-severity impacts.  相似文献   

6.
Objective: The shape, size, bone density, and cortical thickness of the thoracic skeleton vary significantly with age and sex, which can affect the injury tolerance, especially in at-risk populations such as the elderly. Computational modeling has emerged as a powerful and versatile tool to assess injury risk. However, current computational models only represent certain ages and sexes in the population. The purpose of this study was to morph an existing finite element (FE) model of the thorax to depict thorax morphology for males and females of ages 30 and 70 years old (YO) and to investigate the effect on injury risk.

Methods: Age- and sex-specific FE models were developed using thin-plate spline interpolation. In order to execute the thin-plate spline interpolation, homologous landmarks on the reference, target, and FE model are required. An image segmentation and registration algorithm was used to collect homologous rib and sternum landmark data from males and females aged 0–100 years. The Generalized Procrustes Analysis was applied to the homologous landmark data to quantify age- and sex-specific isolated shape changes in the thorax. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant model was morphed to create age- and sex-specific thoracic shape change models (scaled to a 50th percentile male size). To evaluate the thoracic response, 2 loading cases (frontal hub impact and lateral impact) were simulated to assess the importance of geometric and material property changes with age and sex.

Results: Due to the geometric and material property changes with age and sex, there were observed differences in the response of the thorax in both the frontal and lateral impacts. Material property changes alone had little to no effect on the maximum thoracic force or the maximum percent compression. With age, the thorax becomes stiffer due to superior rotation of the ribs, which can result in increased bone strain that can increase the risk of fracture. For the 70-YO models, the simulations predicted a higher number of rib fractures in comparison to the 30-YO models. The male models experienced more superior rotation of the ribs in comparison to the female models, which resulted in a higher number of rib fractures for the males.

Conclusion: In this study, age- and sex-specific thoracic models were developed and the biomechanical response was studied using frontal and lateral impact simulations. The development of these age- and sex-specific FE models of the thorax will lead to an improved understanding of the complex relationship between thoracic geometry, age, sex, and injury risk.  相似文献   

7.
New Car Assessment Program (NCAP) test scores, measured by the United States Department of Transportation's (USDOT) National Highway Traffic Safety Administration (NHTSA), were analyzed in order to assess the benefits of equipping safety belt systems with pretensioners and load limiters. Safety belt pretensioners retract the safety belt almost instantly in a crash to remove excess slack. They tie the occupant to the vehicle's deceleration early during the crash, reducing the peak load experienced by the occupant. Load limiters and other energy management systems allow safety belts to yield in a crash, preventing the shoulder belt from directing too much energy on the chest of the occupant. In NCAP tests, vehicles are crashed into a fixed barrier at 35 mph. During the test, instruments measure the accelerations of the head and chest, as well as the force on the legs of anthropomorphic dummies secured in the vehicle by safety belts. NCAP data from model year 1998 through 2001 cars and light trucks were examined. The combination of pretensioners and load limiters is estimated to reduce Head Injury Criterion (HIC) by 232, chest acceleration by an average of 6.6 g's, and chest deflection (displacement) by 10.6 mm, for drivers and right front passengers. The unit used to measure chest acceleration (g) is defined as a unit of force equal to the force exerted by gravity. All of these reductions are statistically significant. When looked at individually, pretensioners are more effective in reducing HIC scores for both drivers and right front passengers, as well as chest acceleration and chest deflection scores for drivers. Load limiters show greater reductions in chest acceleration and chest deflection scores for right front passengers. By contrast, in make-models for which neither load limiters nor pretensioners have been added, there is little change during 1998 to 2001 in HIC, chest acceleration, or chest deflection values in NCAP tests.  相似文献   

8.
深部复杂地质条件下,煤岩破碎更趋呈块系岩体,在动载作用下易于产生超低摩擦效应并失稳诱发煤岩动力灾害。采用FLAC-3D软件模拟块系岩体在垂直冲击载荷和水平静力共同作用下的动力响应,深入分析块系岩体超低摩擦效应发生机理,得到垂直冲击载荷和水平静力共同作用对工作块体位移和应力的影响规律,确定了块系岩体产生残余位移和超低摩擦效应的水平静力特征值条件。研究结果表明:仅垂直冲击载荷作用时,冲击载荷作用强度对残余位移影响并不明显;垂直冲击载荷和水平静力共同作用下,水平静力与残余位移曲线呈半抛物线关系;不同垂直冲击载荷作用下,产生残余位移的突变点不同,且当施加的水平静力处于不同特征值区间时,工作块体运动状态随之不同。  相似文献   

9.
Objectives: The ultimate goal of this research is to reduce thoracic injuries due to traffic crashes, especially in the elderly. The specific objective is to develop and validate a full-body finite element model under 2 distinct settings that account for factors relevant for thoracic fragility of elderly: one setting representative of an average size male and one representative of an average size Japanese elderly male.

Methods: A new thorax finite element model was developed from medical images of a 71-year-old average Japanese male elderly size (161cm, 60 kg) postmortem human subject (PMHS). The model was validated at component and assembled levels against original series of published test data obtained from the same elderly specimen. The model was completed with extremities and head of a model previously developed. The rib cage and the thoracic flesh materials were assigned age-dependent properties and the model geometry was scaled up to simulate a 50th percentile male. Thereafter, the model was validated against existing biomechanical data for younger and elderly subjects, including hub-to-thorax impacts and frontal impact sled PMHS test data. Finally, a parametric study was conducted with the new models to understand the effect of size and aging factors on thoracic response and risk of rib fractures.

Results: The model behaved in agreement with tabletop test experiments in intact, denuded, and eviscerated tissue conditions. In frontal impact sled conditions, the model showed good 3-dimensional head and spine kinematics, as well as rib cage multipoint deflections. When properties representative of an aging person were simulated, both the rib cage deformation and the predicted number of rib fractures increased. The effects of age factors such as rib cortical thickness, mechanical properties, and failure thresholds on the model responses were consistent with the literature. Aged and thereby softened flesh reduced load transfer between ribs; the coupling of the rib cage was reduced. Aged costal cartilage increased the severity of the diagonal belt loading sustained by the lower loaded rib cage.

Conclusions: When age-specific parameters were implemented in a finite element (FE) model of the thorax, the rib cage kinematics and thorax injury risk increased. When the effect of size was isolated, 2 factors, in addition to rib material properties, were found to be important: flesh and costal cartilage properties. These 2 were identified to affect rib cage deformation mechanisms and may potentially increase the risk of rib fractures.  相似文献   

10.
Objectives: Understanding how lower extremity injuries from automotive intrusion and underbody blast (UBB) differ is of key importance when determining whether automotive injury criteria can be applied to blast rate scenarios. This article provides a review of existing injury risk analyses and outlines an approach to improve injury prediction for an expanded range of loading rates. This analysis will address issues with existing injury risk functions including inaccuracies due to inertial and potential viscous resistance at higher loading rates.

Methods: This survival analysis attempts to minimize these errors by considering injury location statistics and a predictor variable selection process dependent upon failure mechanisms of bone. Distribution of foot/ankle/leg injuries induced by axial impact loading at rates characteristic of UBB as well as automotive intrusion was studied and calcaneus injuries were found to be the most common injury; thus, footplate force was chosen as the main predictor variable because of its proximity to injury location to prevent inaccuracies associated with inertial differences due to loading rate. A survival analysis was then performed with age, sex, dorsiflexion angle, and mass as covariates. This statistical analysis uses data from previous axial postmortem human surrogate (PMHS) component leg tests to provide perspectives on how proximal boundary conditions and loading rate affect injury probability in the foot/ankle/leg (n = 82).

Results: Tibia force-at-fracture proved to be up to 20% inaccurate in previous analyses because of viscous resistance and inertial effects within the data set used, suggesting that previous injury criteria are accurate only for specific rates of loading and boundary conditions. The statistical model presented in this article predicts 50% probability of injury for a plantar force of 10.2 kN for a 50th percentile male with a neutral ankle position. Force rate was found to be an insignificant covariate because of the limited range of loading rate differences within the data set; however, compensation for inertial effects caused by measuring the force-at-fracture in a location closer to expected injury location improved the model's predictive capabilities for the entire data set.

Conclusions: This study provides better injury prediction capabilities for both automotive and blast rates because of reduced sensitivity to inertial effects and tibia–fibula load sharing. Further, a framework is provided for future injury criteria generation for high rate loading scenarios. This analysis also suggests key improvements to be made to existing anthropomorphic test device (ATD) lower extremities to provide accurate injury prediction for high rate applications such as UBB.  相似文献   

11.
Abstract

Objective: This study aimed to reconstruct 11 motor vehicle crashes (6 with thoracolumbar fractures and 5 without thoracolumbar fractures) and analyze the fracture mechanism, fracture predictors, and associated parameters affecting thoracolumbar spine response.

Methods: Eleven frontal crashes were reconstructed with a finite element simplified vehicle model (SVM). The SVM was tuned to each case vehicle and the Total HUman Model for Safety (THUMS) Ver. 4.01 was scaled and positioned in a baseline configuration to mimic the documented precrash driver posture. The event data recorder crash pulse was applied as a boundary condition. For the 6 thoracolumbar fracture cases, 120 simulations to quantify uncertainty and response variation were performed using a Latin hypercube design of experiments (DOE) to vary seat track position, seatback angle, steering column angle, steering column position, and D-ring height. Vertebral loads and bending moments were analyzed, and lumbar spine indices (unadjusted and age-adjusted) were developed to quantify the combined loading effect. Maximum principal strain and stress data were collected in the vertebral cortical and trabecular bone. DOE data were fit to regression models to examine occupant positioning and thoracolumbar response correlations.

Results: Of the 11 cases, both the vertebral compression force and bending moment progressively increased from superior to inferior vertebrae. Two thoracic spine fracture cases had higher average compression force and bending moment across all thoracic vertebral levels, compared to 9 cases without thoracic spine fractures (force: 1,200.6 vs. 640.8 N; moment: 13.7 vs. 9.2?Nm). Though there was no apparent difference in bending moment at the L1–L2 vertebrae, lumbar fracture cases exhibited higher vertebral bending moments in L3–L4 (fracture/nonfracture: 45.7 vs. 33.8?Nm). The unadjusted lumbar spine index correctly predicted thoracolumbar fracture occurrence for 9 of the 11 cases (sensitivity?=?1.0; specificity?=?0.6). The age-adjusted lumbar spine index correctly predicted thoracolumbar fracture occurrence for 10 of the 11 cases (sensitivity?=?1.0; specificity?=?0.8). The age-adjusted principal stress in the trabecular bone was an excellent indicator of fracture occurrence (sensitivity?=?1.0; specificity?=?1.0). A rearward seat track position and reclined seatback increased the thoracic spine bending moment by 111–329%. A more reclined seatback increased the lumbar force and bending moment by 16–165% and 67–172%, respectively.

Conclusions: This study provided a computational framework for assessing thoracolumbar fractures and also quantified the effect of precrash driver posture on thoracolumbar response. Results aid in the evaluation of motor vehicle crash–induced vertebral fractures and the understanding of factors contributing to fracture risk.  相似文献   

12.
This article presents a series of 49 km/h sled tests using the Hybrid III 6-year-old dummy in a high-back booster, a low-back booster, and a three-point belt. Although a 10-year review at a level I trauma center showed that noncontact cervical spine injuries are rare in correctly restrained booster-age children, dummy neck loads exceeded published injury thresholds in all tests. The dummy underwent extreme neck flexion during the test, causing full-face contact with the dummy's chest. These dummy kinematics were compared to the kinematics of a 12-year-old cadaver tested in a similar impact environment. The cadaver test showed neck flexion, but also significant thoracic spinal flexion which was nonexistent in the dummy. This comparison was expanded using MADYMO simulations in which the thoracic spinal stiffness of the dummy model was decreased to give a more biofidelic kinematic response. We conclude that the stiff thoracic spine of the dummy results in high neck forces and moments that are not representative of the true injury potential.  相似文献   

13.
The aim of the work is to outline a procedure of finding force-velocity (F–V) characteristics (F = f(V)) of individual skeletal muscles of the human locomotor system. The presentation is based on an example concerning extensors of the elbow joint: the lateral and long heads of triceps brachii (TBCIat and TBCIong). The experimental part of the procedure involves a natural movement of using the upper extremity to push an external object of variable, adjustable load, engaging both the elbow and shoulder joint.

Five men aged 23 took part in the experiment. Their task was to push the handle of a physical pendulum whose moment of inertia could be adjusted within the range of 58 kg m2-450 kg m2, so as to give it maximum angular velocity. During each trial the movement of the trunk, of the upper extremity and of the pendulum was video recorded and the force applied with the hand to the handle of the pendulum was measured.

In order to find the F–V characteristics a simulation model SHOULDER was used, which is capable of solving the synergy problem for muscles of the arm and the shoulder girdle.

It was found that despite considerable dispersion of experimental points the respective regression lines revealed a clear tendency of decreasing muscle force for increased shortening velocity of the monoarticular head (TBCIat) and of increasing muscle force for increased lengthening velocity of the biarticular head (TBCIong) of the triceps brachii muscle.  相似文献   

14.
Objective: Active safety devices such as automatic emergency brake (AEB) and precrash seat belt have the potential to accomplish further reduction in the number of the fatalities due to automotive accidents. However, their effectiveness should be investigated by more accurate estimations of their interaction with human bodies. Computational human body models are suitable for investigation, especially considering muscular tone effects on occupant motions and injury outcomes. However, the conventional modeling approaches such as multibody models and detailed finite element (FE) models have advantages and disadvantages in computational costs and injury predictions considering muscular tone effects. The objective of this study is to develop and validate a human body FE model with whole body muscles, which can be used for the detailed investigation of interaction between human bodies and vehicular structures including some safety devices precrash and during a crash with relatively low computational costs.

Methods: In this study, we developed a human body FE model called THUMS (Total HUman Model for Safety) with a body size of 50th percentile adult male (AM50) and a sitting posture. The model has anatomical structures of bones, ligaments, muscles, brain, and internal organs. The total number of elements is 281,260, which would realize relatively low computational costs. Deformable material models were assigned to all body parts. The muscle–tendon complexes were modeled by truss elements with Hill-type muscle material and seat belt elements with tension-only material. The THUMS was validated against 35 series of cadaver or volunteer test data on frontal, lateral, and rear impacts. Model validations for 15 series of cadaver test data associated with frontal impacts are presented in this article. The THUMS with a vehicle sled model was applied to investigate effects of muscle activations on occupant kinematics and injury outcomes in specific frontal impact situations with AEB.

Results and Conclusions: In the validations using 5 series of cadaver test data, force–time curves predicted by the THUMS were quantitatively evaluated using correlation and analysis (CORA), which showed good or acceptable agreement with cadaver test data in most cases. The investigation of muscular effects showed that muscle activation levels and timing had significant effects on occupant kinematics and injury outcomes. Although further studies on accident injury reconstruction are needed, the THUMS has the potential for predictions of occupant kinematics and injury outcomes considering muscular tone effects with relatively low computational costs.  相似文献   

15.
Objective: The goal of this study was to investigate the influence of the occupant characteristics on seat belt force vs. payout behavior based on experiment data from different configurations in frontal impacts.

Methods: The data set reviewed consists of 58 frontal sled tests using several anthropomorphic test devices (ATDs) and postmortem human subjects (PMHS), restrained by different belt systems (standard belt, SB; force-limiting belt, FLB) at 2 impact severities (48 and 29 km/h). The seat belt behavior was characterized in terms of the shoulder belt force vs. belt payout behavior. A univariate linear regression was used to assess the factor significance of the occupant body mass or stature on the peak tension force and gross belt payout.

Results: With the SB, the seat belt behavior obtained by the ATDs exhibited similar force slopes regardless of the occupant size and impact severities, whereas those obtained by the PMHS were varied. Under the 48 km/h impact, the peak tension force and gross belt payout obtained by ATDs was highly correlated to the occupant stature (P =.03, P =.02) and body mass (P =.05, P =.04), though no statistical difference with the stature or body mass were noticed for the PMHS (peak force: P =.09, P =.42; gross payout: P =.40, P =.48). With the FLB under the 48 km/h impact, highly linear relationships were noticed between the occupant body mass and the peak tension force (R2 = 0.9782) and between the gross payout and stature (R2 = 0.9232) regardless of the occupant types.

Conclusions: The analysis indicated that the PMHS characteristics showed a significant influence on the belt response, whereas the belt response obtained with the ATDs was more reproducible. The potential cause included the occupant anthropometry, body mass distribution, and relative motion among body segments specific to the population variance. This study provided a primary data source to understand the biomechanical interaction of the occupant with the restraint system. Further research is necessary to consider these effects in the computational studies and optimized design of the restraint system in a more realistic manner.  相似文献   


16.
沿空留巷顶板岩层垮落到底板时,会影响底板的受力和变形,进而导致底臌,底臌的产生将直接影响采煤工作开展。为了对巷道底板的变形机理进行研究,根据空留巷底板受力特点,将巷道底板视为弹性地基梁,建立顶板岩层垮落在巷道底板上的不均匀荷载作用下的Winkler弹性地基梁力学模型,通过对高阶微分方程求解,分析巷道底板任一处的挠度、转角、弯矩及剪力的分布规律,并结合内力分布规律对底板破坏机理进行分析。结合工程实践,提出了防止底板变形的措施,为类似工程的设计及施工提供参考。  相似文献   

17.
Objective: The objective of this study was to quantify the population-based effects of a lower shoulder belt load limit on front row occupants in frontal car crashes.

Method: Crashes of modern vehicles from the GIDAS (German In-Depth Accident Study) are corrected for bias and projected to the national level. Injury risk functions are computed for the injury severity levels Maximum Abbreviated Injury Scale (MAIS) 2+, MAIS 3+, and fatal, stratified by 2 age cohorts (16–44 years of age and 45 years or older). To assess the field effectivity of a “softer belt,” the projected crash frequency data are modified separately for the 2 age cohorts such that its risk structure represents the risk of a softer belt. Given those 2 samples, the field effectivity of a softer belt is derived for several shares of the younger age cohort according to the injury severity levels MAIS 2+, MAIS 3+, and fatal.

Results: The injury risk distribution of the projected crash frequency data, represented here by the injury risk functions obtained, fits well into the injury risk distribution of other data sets (Sweden, United States, and Japan) given in the literature. The relative effects of a lower belt force are stable over the different ratios of the younger and old age cohorts. At the MAIS 2+ level, a lower belt force can significantly reduce the number of injuries (about 10%). A lower belt force does not significantly affect the number of MAIS 3+ injuries. A lower belt force can, however, more than double the number of fatal injuries.

Conclusions: Because the number of fatal injuries rises dramatically due to lower belt force, the reduction in the number of MAIS 2+ injuries comes at a very high cost. Therefore, whether reducing the belt force limit is the right approach is questionable.  相似文献   


18.
Objective: This study aims, by means of the WorldSID 50th percentile male, to evaluate thoracic loading and injury risk to the near-side occupant due to occupant-to-occupant interaction in combination with loading from an intruding structure.

Method: Nine vehicle crash tests were performed with a 50th percentile WorldSID male dummy in the near-side (adjacent to the intruding structure) seat and a THOR or ES2 dummy in the far-side (opposite the intruding structure) seat. The near-side seated WorldSID was equipped with 6 + 6 IR-Traccs (LH and RH) in the thorax/abdomen enabling measurement of bilateral deflection. To differentiate deflection caused by the intrusion, and the deflection caused by the neighboring occupant, time history curves were analyzed. The crash tests were performed with different modern vehicles, equipped with thorax side airbags and inflatable curtains, ranging from a compact car to a large sedan, and in different loading conditions such as car-to-car, barrier, and pole tests. Lateral delta V based on vehicle tunnel acceleration and maximum residual intrusion at occupant position were used as a measurement of crash severity to compare injury measurements.

Result: In the 9 vehicle crash tests, thoracic loading, induced by the intruding structure as well as from the far-side occupant, varied due to the size and structural performance of the car as well as the severity of the crash. Peak deflection on the thoracic outboard side occurred during the first 50 ms of the event. Between 70 to 150 ms loading induced by the neighboring occupant occurred and resulted in an inboard-side peak deflection and viscous criterion. In the tests where the target vehicle lateral delta V was below 30 km/h and intrusion less than 200 mm, deflections were low on both the outboard (20–40 mm) and inboard side (10–15 mm). At higher crash severities, delta V 35 km/h and above as well as intrusions larger than 350 mm, the inboard deflections (caused by interaction to the far-side occupant) were of the same magnitude or even higher (30–70 mm) than the outboard deflections (30–50 mm).

Conclusion: A WorldSID 50th percentile male equipped with bilateral IR-Traccs can detect loading to the thorax from a neighboring occupant making injury risk assessment feasible for this type of loading. At crash severities resulting in a delta V above 35 km/h and intrusions larger than 350 mm, both the inboard deflection and VC resulted in high risks of Abbreviated Injury Scale (AIS) 3+ injury, especially for a senior occupant.  相似文献   

19.
青岛地铁苗岭路站是在土岩组合地层下开挖的狭长型换乘车站,深基坑两侧既有建筑物众多且临近基坑,施工中采用龙门吊运输材料。为探究龙门吊移动荷载作用下基坑围护结构和土体的空间变形规律,建立三维有限元数值模型,对比分析了加载前后基坑围护桩侧移变形和坑外地表沉降,并探讨了起吊物与边跨的距离对基坑变形的影响。结果表明:龙门吊移动荷载作用下基坑产生明显的动态响应;围护桩桩体侧移变形比竖向变形响应明显且沿深度有所不同,嵌岩点处侧移响应最明显,土岩交界面处响应最小;受基坑阴角效应的影响,动载作用下角隅处土体沉降变形保持不变,坑外土体最大变形位置由距坑边2 m处转移至基坑边;起吊物的移动在基坑边产生明显的变形动态响应区域,随着起吊物远离边跨,桩周土体的沉降量逐渐减小,动态响应区域向远离坑角方向增大;加强冠梁连接、适当增大阴角处桩间距或减少锚杆施作可以保证基坑的稳定性,经济有效。  相似文献   

20.
在高层建筑火灾中,玻璃幕墙的破裂受到环境风和室内火灾的共同影响。研究了600 mm×600 mm×6mm的浮法玻璃幕墙在点支承安装方式下受到热辐射荷载和风荷载情况下的响应规律。分析了不同工况下玻璃表面的温度变化、风荷载的大小与玻璃破裂时间的关系、玻璃破裂与温差之间的关系、玻璃裂纹扩展及其与风速之间的关系。结果表明在玻璃两侧分别受到热辐射和风荷载共同作用时,风荷载的增加会加速玻璃的破裂。研究结果可为玻璃幕墙的工程应用提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号