首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
From February 29 until June 15 2008 gaseous elemental mercury (GEM) fluxes above a snow covered surface was measured in Ny-Ålesund, Svalbard using a GEM flux gradient method. A clear seasonal pattern in the meteorological variables associated with the GEM flux was observed. For the first time in Ny-Ålesund a net deposition of GEM was recorded during polar night, despite the lack of Atmospheric Mercury Depletion Events (AMDE). 7500 ng m−2 GEM was emitted from the surface snow to the air during the entire study. The depositions of GEM and reactive gaseous mercury (RGM) were calculated to be 1500 and 1000 ng m−2, respectively, during the same time period. The GEM fluxes reported in this study were found to be comparable to GEM fluxes measured at other Arctic locations (i.e. Alert and Barrow), suggesting that GEM acts in a similar way throughout the Arctic. An assessment of the GEM flux gradient method used discovered a non-linear GEM concentration profile. The nonlinearity was explained by a non-stationary turbulence regime. The GEM flux calculated was not found to be representative for the entire surface boundary layer.  相似文献   

2.
Experiments were conducted during the ALERT 2000 field campaign aimed at understanding the role of air–snow interactions in carbonyl compound chemistry and the associated ozone depletion in the atmospheric boundary layer. Under sunlit conditions, we find that formaldehyde, acetaldehyde and acetone exhibit a significant diel cycle with average ambient air concentrations of 166, 53 and 385 ppt, respectively. A box model of Arctic surface layer chemistry was used to understand the diel behavior of carbonyl compound concentrations at Alert, Nunavut, Canada, with a focus on the chemical and physical processes that affect carbonyl compounds. Results of the study showed that the measured carbonyl compound concentrations can only be simulated when a radiation-dependent snowpack source term (possibly photochemistry) and a temperature-dependent sink (physical uptake on snow grains) of carbonyl compounds were added to the model. We are able to simulate the concentration and amplitude of the observed diel cycle, but not the phase of the cycle. These results help confirm the importance of snowpack chemistry and physical processes with respect to carbonyl compound concentrations in the Arctic surface boundary layer, and reveal weakness in the details of our understanding.  相似文献   

3.
The study of mercury (Hg) cycle in Arctic regions is a major subject of concern due to the dramatic increases of Hg concentrations in ecosystem in the last few decades. The causes of such increases are still in debate, and an important way to improve our knowledge on the subject is to study the exchanges of Hg between atmosphere and snow during springtime. We organized an international study from 10 April to 10 May 2003 in Ny-Ålesund, Svalbard, in order to assess these fluxes through measurements and derived calculations.Snow-to-air emission fluxes of Hg were measured using the flux chamber technique between ∼0 and 50 ng m−2 h−1. A peak in Gaseous Elemental Mercury (GEM) emission flux from the snow to the atmosphere has been measured just few hours after an Atmospheric Mercury Depletion Event (AMDE) recorded on 22 April 2004. Surprisingly, this peak in GEM emitted after this AMDE did not correspond to any increase in Hg concentration in snow surface. A peak in GEM flux after an AMDE was observed only for this single event but not for the four other AMDEs recorded during this spring period.In the snow pack which is seasonal and about 40 cm depth above permafrost, Hg is involved in both production and incorporation processes. The incorporation was evaluated to ∼5–40 pg m2 h. Outside of AMDE periods, Hg flux from the snow surface to the atmosphere was the consequence of GEM production in the air of snow and was about ∼15–50 ng m−2 h−1, with a contribution of deeper snow layers evaluated to ∼0.3–6.5 ng m−2 h−1. The major part of GEM production is then mainly a surface phenomenon. The internal production of GEM was largely increasing when snow temperatures were close to melting, indicating a chemical process occurring in the quasi-liquid layer at the surface of snow grains.  相似文献   

4.
Gas and aerosol measurements were made during the Polar Sunrise Experiment 2000 at Alert, Nunavut (Canada), using two independent denuder/filter systems for sampling and subsequent analysis by ion chromatography. Twelve to forty-eight hour samples were taken during a winter (9–21 February 2000) and a spring (17 April–5 May 2000) campaign. During the spring campaign, samples were taken at two different heights above the snow surface to investigate concentration differences. Total particulate NO3 is the most abundant inorganic nitrogen compound during Arctic springtime (mean 137.4 ng m−3). The NO3 fluxes were calculated above the snow surface to help identify processes that control snow–atmosphere exchange of reactive nitrogen compounds. We suggest that the observed fluxes of coarse particle NO3 via snow deposition may contribute to the nitrogen inventory in the snow surface. Measurements of surface snow provide experimental data that constrain the contribution of dry deposition of coarse particle NO3 to <7%. Wet deposition in falling snow appears to be the major contributor to the nitrate input to the snow.  相似文献   

5.
In this investigation, the concentrations of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate bound mercury (PBM) in ambient air were measured at the Hung Kuang (traffic) sampling site during September 27 to October 6, 2014. An ambient air mercury collection system (AAMCS) was utilized to measure simultaneously PBM, GEM, and RGM concentrations in ambient air. The results thus obtained demonstrate that the mean concentrations of PBM, GEM, and RGM were 38.57 ± 11.4 (pg/m3), 17.67 ± 5.56 (ng/m3) and 10.78 ± 2.8 (pg/m3), respectively, at this traffic-sampling site. The mean GEM/PBM and GEM/RGM concentration ratios were 458 and 1639, respectively. The results obtained herein demonstrate that AAMCS can be utilized to collect three phases of mercury simultaneously. The mean PBM, GEM, and RGM concentrations herein were compared with others found in Asia, America, Europe and Antarctica. The mean PBM, GEM, and RGM concentrations were found to be lowest in Asia and Antarctica. The mean PBM concentration in Europe was approximately eight times that in this investigation. The mean GEM and RGM concentrations in this study were 1.21 and 170 times those found in the United States.  相似文献   

6.
The delta-Eddington radiation transfer model is used to calculate actinic fluxes and photolysis rates within the snow pack during the ALERT 2000 field campaign. Actinic fluxes are enhanced within the snow pack due to the high albedo of snow and conversion of direct light to diffuse light. The conversion of direct to diffuse light is highly dependent on the solar zenith angle, as demonstrated by model calculations. The optical properties of Alert snow are modeled as 100 μm radius ice spheres with impurity added to increase the absorption coefficient over that of pure water ice. Using these optical properties, the model achieves good agreement with observations of irradiance within the snow pack. The model is used to calculate the total actinic flux as a function of solar zenith angle and depth for either clear sky or cloudy conditions. The actinic flux is then used to calculate photochemical production of nitrogen oxides from nitrate photolysis assuming that nitrate in snow has the same absorption cross section and quantum yield in snow as in aqueous solution. Assuming all photo-produced nitrogen oxides are released to the gas phase, we derive a maximal flux of nitrogen oxides (NOx+HONO and possibly other products) from the snow pack. The value of this maximal flux depends critically on the assumed quantum yield for production of NO2, which is unknown in ice. Depending on the assumed quantum yield, the calculated maximal flux varies between values four times smaller than the observed NOx+HONO flux to five times larger than the NOx+HONO flux. Therefore, it appears that the calculated flux is in approximate agreement with the observations with a great need for improved understanding of nitrogen photochemistry in snow.  相似文献   

7.
Using a trajectory climatology for the period 1992–2001 we have examined how seasonal changes in transport cause changes in the concentrations of tropospheric ozone (O3), gaseous elemental mercury (GEM) and non-methane hydrocarbons (NMHCs) observed at the Mt. Zeppelin station, Ny-Ålesund (78.9°N, 11.9°E). During April–June O3 depletion events were frequently observed in connection with air transport across the Arctic Basin. The O3 loss was most pronounced in air masses advected close to the surface. This result supports the idea that the O3 depletion reactions take place in the lowermost part of the atmosphere in the central Arctic Basin. A strong positive correlation between springtime O3 depletion events and the oxidation of GEM to divalent mercury was found. During air mass advection from Siberia, the Barents Sea and the Norwegian Sea the strongest correlation was observed during April–May, whereas air masses originating from the Canadian Arctic and the central Arctic areas showed the highest O3–GEM correlation in May–June. We suggest that this 1-month lag could either be due to the position of the marginal ice zone or temperature differences between the northwestern and northeastern air masses. In connection with springtime O3 depletion events low concentrations of some NMHCs, especially ethane and ethyne, were observed, indicating that both bromine (ethyne oxidant) and chlorine radicals (ethane oxidant) are present in the Arctic atmosphere during spring. In winter, negative correlations between O3 and NMHCs were found in connection with air transport from Europe and Siberia, which we interpret as O3 destruction taking place in industrially contaminated plumes.  相似文献   

8.
Acetaldehyde (CH3CHO) and acetone (CH3C(O)CH3) concentrations in ambient air, in snowpack air, and bulk snow were determined at Alert, Nunavut, Canada, as a part of the Polar Sunrise Experiment (PSE): ALERT 2000. During the period of continuous sunlight, vertical profiles of ambient and snowpack air exhibited large concentration gradients through the top ∼10 cm of the snowpack, implying a flux of carbonyl compounds from the surface to the atmosphere. From vertical profile and eddy diffusivity measurements made simultaneously on 22 April, acetaldehyde and acetone fluxes of 4.2(±2.1)×108 and 6.2(±4.2)×108 molecules cm−2 s−1 were derived, respectively. For this day, the sources and sinks of CH3CHO from gas phase chemistry were estimated. The result showed that the snowpack flux of CH3CHO to the atmosphere was as large as the calculated CH3CHO loss rate from known atmospheric gas phase reactions, and at least 40 times larger (in the surface layer) than the volumetric rate of acetaldehyde produced from the assumed main atmospheric gas phase reaction, i.e. reaction of ethane with hydroxyl radicals. In addition, acetaldehyde bulk snow phase measurements showed that acetaldehyde was produced in or on the snow phase, likely from a photochemical origin. The time series for the observed CH3C(O)CH3, ozone (O3), and propane during PSE 1995, PSE 1998, and ALERT 2000 showed a consistent anti-correlation between acetone and O3 and between acetone and propane. However, our data and model simulations showed that the acetone increase during ozone depletion events cannot be explained by gas phase chemistry involving propane oxidation. These results suggest that the snowpack is a significant source of acetaldehyde and acetone to the Arctic boundary layer.  相似文献   

9.
Six groups participated in an international study of springtime atmospheric mercury depletion events (AMDEs) at Ny-Ålesund in the Norwegian Arctic during April and May 2003 with the aim to compare analytical methods for measurements of atmospheric mercury species and study the physical and chemical processes leading to AMDEs. Five groups participated in the method comparison that was conducted at three different locations within Ny-Ålesund. Various automated and manual instrumentation were used to sample, measure and compare gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and mercury associated with particles (Hg-P). The concentration of GEM was reproducible during background conditions. For the first time using ambient air, the statistics associated with round robin test procedures were applied. This was found to be an appropriate tool to investigate the reproducibility of GEM measurements in ambient air. The precision for each group measuring GEM concentrations was found to be consistently good (within 5%). Five AMDEs were recorded during the study. Using four different methods, including single and replicate samples, all groups recorded higher values of RGM and Hg-P during AMDEs. The results show that measuring comparable atmospheric mercury species at both the same and different locations (within the Ny-Ålesund area) is difficult. Not only do site location and site characteristics create challenges when trying to intercompare results but there are difficulties, as well, in obtaining comparable results with similar sampling and analysis methods. Nevertheless, with our current procedures for atmospheric mercury identification we can differentiate with certainty between “high” and “low” concentration values of RGM and Hg-P.  相似文献   

10.
Reduction of divalent mercury and subsequent emission to the atmosphere has been identified as loss process from surface snow, but its mechanism and importance are still unclear. The amount of mercury that stays in the snow pack until spring is of significance, because during snow melt it may be released to the aquatic environment and enter the food web. Better knowledge of its fate in snow might further assist the interpretation of ice core data as paleo-archive. Experiments were performed under well-controlled laboratory conditions in a coated wall flow tube at atmospheric pressure and irradiated with light between 300 nm and 420 nm. Our results show that the presence of benzophenone and of oxalic acid significantly enhances the release of mercury from the ice film during irradiation, whereas humic acid is less potent to promote the reduction. Further it was found that oxygen or chloride, and acidic conditions lowered the photolytically induced mercury release in the presence of benzophenone, while the release got larger with increasing temperatures.  相似文献   

11.
Patterns of gaseous elemental mercury (GEM) were monitored at 20 and 150 cm above the snowpack near Resolute Bay, Cornwallis Island, Nunavut, Canada near the Upper Air Station of Environment Canada (74°42′N, 94°58′W) from 7 May (day 127) to 12 June (day 163) 2003. At this time of year there was 24 h daylight but still a strong diel change in solar radiation. Daily patterns of GEM-tracked solar radiation with a lag of about 2 h and the GEM gradient between these two heights showed the direction of flux. In addition to the previously established autocatalytic reactions involving halogens where reactive gaseous mercury and fine particulate mercury result in direct deposition to the snow, both diffusion to and volatilization from the snow occurred on a regular basis. Total mercury (THg) in the snowpack increased to near 30 ng L−1 following 8 d of atmospheric mercury depletion then decreased to values near 1 ng L−1. Losses from the snow could not be accounted for in melt water as stream runoff values were also low. In other words, most of the mercury associated with increased levels in snow was volatilized back to the atmosphere either directly from the snow or from the water surfaces. However, using accepted mass transport coefficients, the flux appeared low and other mechanisms are suggested. In contrast to THg, methyl mercury (MeHg) in the snow reached values near 140 pg L−1 but also declined to less than detection limit (10 pg L−1) with the onset of warmer temperatures. MeHg in stream runoff water was similar to maximal values seen in the snow. This observation is consistent with the view that MeHg came in the snowfall or was deposited to the snow pack rather than produced in the snow. In contrast, much of the THg associated with mercury depletion events was volatilized back to the atmosphere.  相似文献   

12.
Atmospheric gaseous elemental mercury [GEM] at 1.8, 4, and 59 m above ground, in parking lots, and in indoor and outdoor air was measured in Toronto City, Canada from May 2008-July 2009. The average GEM value at 1.8 m was 1.89 ± 0.62 ng m(-3). The GEM values increased with elevation. The average GEM in underground parking lots ranged from 1.37 to 7.86 ng m(-3) and was higher than those observed from the surface parking lots. The GEM in the indoor air ranged from 1.21 to 28.50 ng m(-3), was higher in the laboratories than in the offices, and was much higher than that in the outdoor air. All these indicate that buildings serve as sources of mercury to the urban atmosphere. More studies are needed to estimate the contribution of urban areas to the atmospheric mercury budget and the impact of indoor air on outdoor air quality and human health.  相似文献   

13.
Semi-continuous measurements of ambient mercury (Hg) species were performed in Detroit, MI, USA for the calendar year 2003. The mean (±standard deviation) concentrations for gaseous elemental mercury (GEM), particulate mercury (HgP), and reactive gaseous mercury (RGM) were 2.2±1.3 ng m−3, 20.8±30.0, and 17.7±28.9 pg m−3, respectively. A clear seasonality in Hg speciation was observed with GEM and RGM concentrations significantly (p<0.001) greater in warm seasons, while HgP concentrations were greater in cold seasons. The three measured Hg species also exhibited clear diurnal trends which were particularly evident during the summer months. Higher RGM concentrations were observed during the day than at night. Hourly HgP and GEM concentrations exhibited a similar diurnal pattern with both being inversely correlated with RGM. Multivariate analysis coupled with conditional probability function analysis revealed the conditions associated with high Hg concentration episodes, and identified the inter-correlations between speciated Hg concentrations, three common urban air pollutants (sulfur dioxide, ozone, and nitric oxides), and meteorological parameters. This analysis suggests that both local and regional sources were major factors contributing to the observed temporal variations in Hg speciation. Boundary layer dynamics and the seasonal meteorological conditions, including temperature and moisture content, were also important factors affecting Hg variability.  相似文献   

14.
Measurements of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate mercury (PHg) have been conducted at Lulin Atmospheric Background Station (LABS) in Taiwan since April 2006. This was the first long-term free tropospheric atmospheric Hg monitoring program in the downwind region of East Asia, which is a major Hg emission source region. Between April 13, 2006 and December 31, 2007, the mean concentrations of GEM, RGM, and PHg were 1.73 ng m?3, 12.1 pg m?3, and 2.3 pg m?3, respectively. A diurnal pattern was observed for GEM with afternoon peaks and nighttime lows, whereas the diurnal pattern of RGM was opposite to that of GEM. Spikes of RGM were frequently observed between midnight and early morning with concurrent decreases in GEM and relative humidity and increases in O3, suggesting the oxidation of GEM and formation of RGM in free troposphere (FT). Upslope movement of boundary layer (BL) air in daytime and subsidence of FT air at night resulted in these diurnal patterns. Considering only the nighttime data, which were more representative of FT air, the composite monthly mean GEM concentrations ranged between 1.06 and 2.06 ng m?3. Seasonal variation in nighttime GEM was evident, with lower concentrations usually occurring in summer when clean marine air masses prevailed. Between fall and spring, air masses passed the East Asian continent prior to reaching LABS, contributing to the elevated GEM concentrations. Analysis of GEM/CO correlation tends to support the argument. Good GEM/CO correlations were observed in fall, winter, and spring, suggesting influence of anthropogenic emission sources. Our results demonstrate the significance of East Asian Hg emissions, including both anthropogenic and biomass burning emissions, and their long-range transport in the FT. Because of the pronounced seasonal monsoon activity and the seasonal variation in regional wind field, export of the Asian Hg emissions to Taiwan occurs mainly during fall, winter, and spring.  相似文献   

15.
This study identified sources of mercury (Hg) in downtown Toronto, Canada by analyzing gaseous elemental mercury (GEM), mercury associated with particles with sizes less than 2.5 microns (PHg < 2.5), and gaseous oxidized inorganic mercury (GOIM), commonly referred to as reactive gaseous mercury (RGM), and air pollutants (CO, NOx, O3, PM2.5, SO2) concentrations between Dec 2003 and Nov 2004. The data were analyzed using Positive Matrix Factorization (PMF) model, Principal Components Analysis (PCA), ratio analysis, back trajectories, and correlation analyses. The analyses suggest industrial sources (chemical production, metal production, sewage treatment), rather than coal combustion, were the major contributors to measured Hg levels. Overlap in source profiles for the Hg sources listed in the Canadian National Pollutant Release Inventory (NPRI) and lack of source profiles for urban sources were the major limitations to positively identifying sources from the PMF and PCA factors. Correlation analyses revealed direct emissions were the sources of GOIM in spring, summer, and fall, and the occurrence of GEM oxidation by ozone in the summer. Elevated Hg events are attributed to emissions from urban sources near the sampling site, regional point sources, and photochemical processes involving ozone.  相似文献   

16.
Atmospheric mercury in the environment as a result of the consumption of fossil fuels, such as coal used in electricity generation, has gained increased attention worldwide because of its toxicity, atmospheric persistence, and bioaccumulation. Determining or predicting the concentration of this pollutant in ambient air is essential for determining sensitive areas requiring health protection. This study investigated the spatiotemporal variability of gaseous elemental mercury (GEM) concentrations and its dry deposition surrounding the Presidente Plutarco Elías Calles (CETEPEC) coal-fired power plant, located on Mexico’s Pacific coast. The CALPUFF dispersion model was applied on the basis of the daily consumption of coal during 2013 for each generating unit in the power plant and considering the local scale. The established 300-ng/m3 annual average risk factor considered by the U.S. Department of Health and Human Services (U.S. DHHS) and Integrated Risk Information System (IRIS) must not be exceeded to meet satisfactory air quality levels. An area of 65 × 60 km was evaluated, and the results show that the risk level for mercury vapor was not exceeded because the annual average concentration was 2.8 ng/m3. Although the predicted risk level was not exceeded, continuous monitoring studies of GEM and of particulates in the atmosphere, soil, and water may be necessary to identify the concentration of this pollutant, specifically that resulting from coal-fired power plants operated in environmental areas of interest in Mexico. The dry mercury deposition was low in the study area; according to the CALPUFF model, the annual average was 1.40E?2 ng/m2/sec. These results represent a starting point for Mexico’s government to implement the Minamata Convention on Mercury, which Mexico signed in 2013.

Implications: The obtained concentrations of mercury from a bigger coal-fired plant in Mexico, through the application of the CALPUFF dispersion model by the mercury emissions, are below the level recommended according to the US Department of Health and Human Services and Integrated Risk Information System. These results provide evidence of important progress in the planning and installation to the future of monitoring mercury stations in the area of interest.  相似文献   

17.
The relationship between near-surface ozone concentration and the structure of the nocturnal boundary layer was investigated during a field campaign conducted in 1998 in the Lower Fraser Valley (LFV), British Columbia Canada. Despite the spatial and temporal variation in frequency and morphology, secondary nocturnal ozone maxima were shown to be an important feature of the diurnal ozone cycle throughout the LFV, and localised increases in ozone occasionally exceeded more than half the previous day's maximum concentration.Turbulence in the nocturnal boundary layer was shown to be weak and intermittent. Vertical profiles of Richardson number and ozone concentration indicated that the temporary turbulent coupling of the residual layer to the surface layer facilitated the transport of ozone stored aloft to the surface. Despite the overall complexity of the system, results show that seven out of the 19 ozone spikes observed at the Aldergrove site coincided with turbulence associated with the development of the down-valley wind system. A further nine spikes occurred during periods when a low-level jet was identified aloft. Significantly, ozone concentrations were shown to be highly variable in the residual layer and played an important role in determining the morphology of secondary ozone maxima at the surface. Largest increases in surface ozone concentration occurred when turbulence coincided with periods when ozone concentrations in excess of 80 ppb were observed aloft.  相似文献   

18.
The Moody Tower measurement site at the University of Houston experienced several large ozone events during the Texas-II Radical and Aerosol Measurement Project (TRAMP) campaign between 13 Aug–02 Oct, 2006. This rooftop site samples that atmosphere 70 m a.g.l. and consequently is less susceptible to local surface emissions. Several high-ozone episodes encountered at Moody Tower during the TRAMP campaign were preceded one to two days earlier by a cold front passage, creating a situation where polluted air is transported from the North interacts with local Houston emissions and with light local winds. High quality CO measurements were good indicators of long range transport of pollution and/or biomass burning. During TRAMP there were also 4 periods with low “background” CO characterized by southerly winds, overcast conditions and low NOx and O3 mixing ratios. The summer and fall of 2000 was an unusually hot period in Houston with considerably higher ozone levels than the 2000–2007 climatology. The 2006 TRAMP time period is more representative of the typical conditions for these 8 years. Over the time period from 1991 to 2009 the number of 8-h ozone episode days in Houston has decreased, as have the peak 1-h ozone mixing ratios. It is not possible from this analysis to demonstrate whether these improvements in Houston air quality are due to reductions in NOx levels, VOCs levels, and/or changes in meteorology.  相似文献   

19.
Because investigations of PAN at higher southern latitudes are very scarce, we measured surface PAN concentrations for the first time in Antarctica. During the Photochemical Experiment at Neumayer (PEAN'99) campaign mean surface PAN mixing ratios of 13±7 pptv and maximum values of 48 pptv were found. When these PAN mixing ratios were compared to the sum of NOx and inorganic nitrate they were found to be equal or higher. Low ambient air temperatures and low PAN concentrations caused a slow homogeneous PAN decomposition rate of approximately 5×10−2 pptv h−1. These slow decay rates were not sufficient to firmly establish the simultaneously observed NOx concentrations. In addition, low concentration ratios of [HNO3]/[NOx] imply that the photochemical production of NOx within the snow pack can influence surface NOx mixing ratios in Antarctica. Alternate measurements of PAN mixing ratios at two different heights above the snow surface were performed to derive fluxes between the lower troposphere and the underlying snow pack using calculated friction velocities. Most of the concentration differences were below the precision of the measurements. Therefore, only an upper limit for the PAN flux of ±1×1013 molecules m−2 s−1 without a predominant direction can be estimated. However, PAN fluxes below this limit can still influence both the transfer of nitrogen compounds between atmosphere and ice, and the PAN budget in higher southern latitudes.  相似文献   

20.
This study investigated the seasonal variation and spatial distribution of gaseous and particulate mercury at a unique mercury-contaminated remediation site located at the near-coastal region of Tainan City, Taiwan. Gaseous elemental mercury (GEM), particulate mercury (PTM), and dustfall mercury (DFM) were measured at six nearby sites from November 2009 to September 2010. A newly issued Method for Sampling and Analyzing Mercury in Air (National Institute of Environmental Analysis [NIEA] Method A304.10C) translated from U.S. Environmental Protection Agency (EPA) Method 10-5, was applied for the measurement of atmospheric mercury in this particular study. One-year field measurements showed that the seasonal averaged concentrations of GEM and PTM were in the range of 5.56-12.60 and 0.06-0.22 ng/m3, respectively, whereas the seasonal averaged deposition fluxes of DFM were in the range of 27.0-56.8 g/km2-month. The maximum concentrations of GEM and PTM were 38.95 and 0.58 ng/m3, respectively. The atmospheric mercury apportioned as 97.42-99.87% GEM and 0.13-2.58% PTM. As a whole, the concentrations of mercury species were higher in the springtime and summertime than those in the wintertime and fall. The southern winds generally brought higher mercury concentrations, whereas the northern winds brought relatively lower mercury concentrations, to the nearby fishing villages. This study revealed that the mercury-contaminated remediation site, an abandoned chlor-alkali manufacturing plant, was the major mercury emission source that caused severe atmospheric mercury contamination over the investigation region. The hot spot of mercury emissions was allocated at the southern tip of the abandoned chlor-alkali manufacturing plant. On-site continuous monitoring of GEM at the mercury-contaminated remediation site observed that GEM concentrations during the open excavation period were 2-3 times higher than those during the nonexcavation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号