首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The methods of positive matrix factorization–chemical mass balance and principal component analysis/multiple linear regression–chemical mass balance were studied in this paper, for combined source apportionment. Due to the high similarity among the source profiles, several problems would raised when only one receptor model was applied. For example, the collinearity problem would result in the negative contributions when applying CMB model; certain sources would not to be separated out when applying PCA or PMF model. In this study, PCA/MLR–CMB model and PMF–CMB were attempted to resolve the problem, where the combined models were applied to study the synthetic and ambient datasets. In synthetic dataset, there were seven sources (six actual sources from real world, and one unknown source). The results obtained by the combined models show that the combined source apportionment technique is feasible. In addition, an ambient dataset from a northern city in China was analyzed by PCA/MLR–CMB model and PMF–CMB model, and these two models got the similar results. The results show that coal combustion contributed the largest fraction to the total mass.  相似文献   

2.
The widely used source apportionment model, positive matrix factorization (PMF2), has been applied to various air pollution data. Recently, U.S. Environmental Protection Agency (EPA) developed EPA positive matrix factorization (PMF), a version of PMF that will be freely distributed by EPA. The objectives of this study were to conduct source apportionment studies for particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)) speciation data using PMF2 and EPA PMF (version 1.1) and to compare identified sources between the two models. In the present study, ambient PM(2.5) compositional datasets of 24-hr integrated samples collected at EPA Speciation Trends Network monitoring sites in Chicago, IL, and Portland, OR, were analyzed. Both PMF2 and EPA PMF extracted eight sources for the Chicago data and 10 sources for the Portland data. The model-resolved source profiles were similar between two models for both datasets. However, in several sources, the average contributions did not agree well and the time series contributions were not highly correlated. The differences between PMF2 and EPA PMF solutions were caused by the different least-square algorithm and the different nonnegativity constraints. Most of the average source contributions resolved by both models were within 5-95% uncertainty provided by EPA PMF, indicating that the sources resolved by both models were reproducible.  相似文献   

3.
The impacts of emissions plumes from major industrial sources on black carbon (BC) and BTEX (benzene, toluene, ethyl benzene, xylene isomers) exposures in communities located >10 km from the industrial source areas were identified with a combination of stationary measurements, source identification using positive matrix factorization (PMF), and dispersion modeling. The industrial emissions create multihour plume events of BC and BTEX at the measurement sites. PMF source apportionment, along with wind patterns, indicates that the observed pollutant plumes are the result of transport of industrial emissions under conditions of low boundary layer height. PMF indicates that industrial emissions contribute >50% of outdoor exposures of BC and BTEX species at the receptor sites. Dispersion modeling of BTEX emissions from known industrial sources predicts numerous overnight plumes and overall qualitative agreement with PMF analysis, but predicts industrial impacts at the measurement sites a factor of 10 lower than PMF. Nonetheless, exposures associated with pollutant plumes occur mostly at night, when residents are expected to be home but are perhaps unaware of the elevated exposure. Averaging data samples over long times typical of public health interventions (e.g., weekly or biweekly passive sampling) misapportions the exposure, reducing the impact of industrial plumes at the expense of traffic emissions, because the longer samples cannot resolve subdaily plumes. Suggestions are made for ways for future distributed pollutant mapping or intervention studies to incorporate high time resolution tools to better understand the potential impacts of industrial plumes.

Implications: Emissions from industrial or other stationary sources can dominate air toxics exposures in communities both near the source and in downwind areas in the form of multihour plume events. Common measurement strategies that use highly aggregated samples, such as weekly or biweekly averages, are insensitive to such plume events and can lead to significant under apportionment of exposures from these sources.  相似文献   


4.
The application of three-way data sets (combined multisite data sets) for source apportionment has become common, but its influence on the performance of receptor modeling techniques has not yet been explored systematically. To study the influence of site-to-site correlations of source contributions and the spatial variability of source profiles on two- and three-way positive matrix factorization (PMF), simulated three-way data sets were constructed and modeled by different applications of PMF (PMF2 for each site individually, PMF2 for data sets combining all sites together, and PMF3 for all sites). In addition, the performance of PMF was evaluated under conditions of collinearity and different source categories at two sites. The results indicated that if the sites were contributed by sources with identical profiles, the site-to-site correlations of source contributions would not influence the PMF2, and the three-way blocks could be used by PMF2. However, the PMF2 using three-way data sets was sensitive to the spatial variability of source profiles. For the three-way model, PMF3 could perform well only when all of the sources exhibited strong site-to-site associations among all sites, and at the same time, the spatial variability of source profiles were sufficiently small. It might due to the algorithm that, for each source, PMF3 produces the same source profile and the same temporal variation in daily contributions among all sites.
Implications:?The application of multisite data sets for source apportionment has become common. However, limited work investigated the accuracy of two- and three-way PMFs when using multisite data sets. If the application of PMFs using multisite data sets were not appropriate, the results would be unreasonable. The unreasonable results would supply confused information for PM control strategies. In this work, simulated multisite data sets were modeled by different applications of PMFs. The effort to assess and compare the performance of two- and three-way PMFs using multisite data sets is very limited. The findings could provide information for multisite source apportionment.  相似文献   

5.
This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of seasonal variation and enrichment factors. For the first time, source apportionment was achieved at this location using two widely used receptor models (principal component analysis/multi-linear regression analysis (PCA/MLRA) and positive matrix factorization (PMF)). Four main aerosol sources were identified by PCA/MLRA and interpreted as: resuspended particulate and a pseudo-marine factor (winter street management), both related to the coarse fraction, plus mixed combustions and secondary aerosol largely associated to traffic and long-lived species typical of the fine fraction. The PMF model resolved six main aerosol sources, interpreted as: mineral dust, road dust, traffic, secondary aerosol, biomass burning and again a pseudo-marine factor. Source apportionment results from both models are in good agreement providing a 30 and a 33 % by weight respectively for PCA-MLRA and PMF for the coarse fraction and 70 % (PCA-MLRA) and 67 % (PMF) for the fine fraction. The episodic influence of Saharan dust transport on PM10 exceedances in Bologna was identified and discussed in term of meteorological framework, composition, and quantitative contribution.  相似文献   

6.
This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM10 and PM2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.  相似文献   

7.
Identifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models. Gasoline-related sources, petrochemical production, and liquefied petroleum gas (LPG) were identified by all three models as the major contributors, with UNMIX and PMF producing quite similar results. The contributions of gasoline-related sources and LPG estimated by the CMB model were higher, and petrochemical emissions were lower than in the UNMIX and PMF results, possibly because the VOC profiles used in the CMB model were for fresh emissions and the profiles extracted from ambient measurements by the two-factor analysis models were "aged".  相似文献   

8.
The present study investigated the comprehensive chemical composition [organic carbon (OC), elemental carbon (EC), water-soluble inorganic ionic components (WSICs), and major & trace elements] of particulate matter (PM2.5) and scrutinized their emission sources for urban region of Delhi. The 135 PM2.5 samples were collected from January 2013 to December 2014 and analyzed for chemical constituents for source apportionment study. The average concentration of PM2.5 was recorded as 121.9 ± 93.2 μg m?3 (range 25.1–429.8 μg m?3), whereas the total concentration of trace elements (Na, Ca, Mg, Al, S, Cl, K, Cr, Si, Ti, As, Br, Pb, Fe, Zn, and Mn) was accounted for ~17% of PM2.5. Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon seasons. The chemical composition of the PM2.5 was reconstructed using IMPROVE equation, which was observed to be in good agreement with the gravimetric mass. Source apportionment of PM2.5 was carried out using the following three different receptor models: principal component analysis with absolute principal component scores (PCA/APCS), which identified five major sources; UNMIX which identified four major sources; and positive matrix factorization (PMF), which explored seven major sources. The applied models were able to identify the major sources contributing to the PM2.5 and re-confirmed that secondary aerosols (SAs), soil/road dust (SD), vehicular emissions (VEs), biomass burning (BB), fossil fuel combustion (FFC), and industrial emission (IE) were dominant contributors to PM2.5 in Delhi. The influences of local and regional sources were also explored using 5-day backward air mass trajectory analysis, cluster analysis, and potential source contribution function (PSCF). Cluster and PSCF results indicated that local as well as long-transported PM2.5 from the north-west India and Pakistan were mostly pertinent.  相似文献   

9.
Abstract

Source apportionment analyses were carried out by means of receptor modeling techniques to determine the contribution of major fine particulate matter (PM2.5) sources found at six sites in Mexico City. Thirty-six source profiles were determined within Mexico City to establish the fingerprints of particulate matter sources. Additionally, the profiles under the same source category were averaged using cluster analysis and the fingerprints of 10 sources were included. Before application of the chemical mass balance (CMB), several tests were carried out to determine the best combination of source profiles and species used for the fitting. CMB results showed significant spatial variations in source contributions among the six sites that are influenced by local soil types and land use. On average, 24-hr PM2.5 concentrations were dominated by mobile source emissions (45%), followed by secondary inorganic aerosols (16%) and geological material (17%). Industrial emissions representing oil combustion and incineration contributed less than 5%, and their contribution was higher at the industrial areas of Tlalnepantla (11%) and Xalostoc (8%). Other sources such as cooking, biomass burning, and oil fuel combustion were identified at lower levels. A second receptor model (principal component analysis, [PCA]) was subsequently applied to three of the monitoring sites for comparison purposes. Although differences were obtained between source contributions, results evidence the advantages of the combined use of different receptor modeling techniques for source apportionment, given the complementary nature of their results. Further research is needed in this direction to reach a better agreement between the estimated source contributions to the particulate matter mass.  相似文献   

10.
The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic-related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24-hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature-resolved carbon fractions also enhanced separations of carbon-rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate-rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature-resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   

11.
Particle composition data for PM2.5 samples collected at Kalmiopsis Interagency Monitoring of Protected Visual Environments (IMPROVE) site in southwestern Oregon from March 2000 to May 2004 were analyzed to provide source identification and apportionment. A total of 493 samples were collected and 32 species were analyzed by particle induced X-ray emission, proton elastic scattering analysis, photon-induced X-ray fluorescence, ion chromatography, and thermal optical reflectance methods. Positive matrix factorization (PMF) was used to estimate the source profiles and their mass contributions. The PMF modeling identified nine sources. In the Kalmiopsis site, the average mass was apportioned to wood/field burning (38.4%), secondary sulfate (26.9%), airborne soil including Asian dust (8.6 %), secondary nitrate (7.6%), fresh sea salt (5.8%), OP-rich sulfate (4.9%), aged sea salt (4.5 %), gasoline vehicle (1.9%), and diesel emission (1.4%). The potential source contribution function (PSCF) was then used to help identify likely locations of the regional sources of pollution. The PSCF map for wood/field burning indicates there is a major potential source area in the Siskiyou County and eastern Oregon. The potential source locations for secondary sulfate are found in western Washington, northwestern Oregon, and the near shore Pacific Ocean where there are extensive shipping lanes. It was not possible to extract a profile directly attributable to ship emissions, but indications of their influence are seen in the secondary sulfate and aged sea salt compositions.  相似文献   

12.
A source apportionment study was conducted at two rural locations, Potsdam and Stockton, to assess the in-state/out-of-state sources of PM2.5 and Hg in New York State. At both locations, samples were collected between November 2002 and August 2005 and analyzed for fine PM mass and its chemical constituents. The measured chemical constituents included elements, cations, anions, organic and elemental carbon (OC and EC), black carbon (BC), and water-soluble short-chain (WSSC) organic acids. Positive matrix factorization (PMF) was applied to the measured concentrations and eight and seven factors were resolved at Potsdam and Stockton, respectively. Four factors were resolved in common between the two locations including secondary sulfate, secondary nitrate, secondary OC, and a crustal factor. The factor profiles of mixed industrial and motor vehicle factors resolved at Potsdam were different compared with the corresponding profiles for these factors at Stockton. A resuspended road salt factor was identified at Potsdam, while an aged sea salt factor was identified at Stockton. At Potsdam, a wood smoke factor was also resolved. Among the resolved factors, secondary sulfate was the highest contributor to the measured mass at both sites. Potential source contribution function (PSCF) analysis indicated the Ohio River Valley region as a common potential source region for this factor at both locations. For the secondary nitrate factor, at Potsdam PSCF analysis indicated the Midwestern US (NOx emissions), and the US farm belt (ammonia emissions) as potential source regions, while at Stockton, the Midwestern US (power plant NOx emissions) was indicated as a major potential source region.  相似文献   

13.
Particulate matter less than 2.5 microns in diameter (PM(2.5)) has been linked with a wide range of adverse health effects. Determination of the sources of PM(2.5) most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM(2.5) speciation measurements.In this study, PM(2.5) source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM(2.5) measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF.Sensitivity of the PMF2 and ME2 models to the selection of speciated PM(2.5) components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM(2.5) emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers.  相似文献   

14.
Receptor-oriented source apportionment models are often used to identify sources of ambient air pollutants and to estimate source contributions to air pollutant concentrations. In this study, a PCA/APCS model was applied to the data on non-methane hydrocarbons (NMHCs) measured from January to December 2001 at two sampling sites: Tsuen Wan (TW) and Central & Western (CW) Toxic Air Pollutants Monitoring Stations in Hong Kong. This multivariate method enables the identification of major air pollution sources along with the quantitative apportionment of each source to pollutant species. The PCA analysis identified four major pollution sources at TW site and five major sources at CW site. The extracted pollution sources included vehicular internal engine combustion with unburned fuel emissions, use of solvent particularly paints, liquefied petroleum gas (LPG) or natural gas leakage, and industrial, commercial and domestic sources such as solvents, decoration, fuel combustion, chemical factories and power plants. The results of APCS receptor model indicated that 39% and 48% of the total NMHCs mass concentrations measured at CW and TW were originated from vehicle emissions, respectively. 32% and 36.4% of the total NMHCs were emitted from the use of solvent and 11% and 19.4% were apportioned to the LPG or natural gas leakage, respectively. 5.2% and 9% of the total NMHCs mass concentrations were attributed to other industrial, commercial and domestic sources, respectively. It was also found that vehicle emissions and LPG or natural gas leakage were the main sources of C(3)-C(5) alkanes and C(3)-C(5) alkenes while aromatics were predominantly released from paints. Comparison of source contributions to ambient NMHCs at the two sites indicated that the contribution of LPG or natural gas at CW site was almost twice that at TW site. High correlation coefficients (R(2) > 0.8) between the measured and predicted values suggested that the PCA/APCS model was applicable for estimation of sources of NMHCs in ambient air.  相似文献   

15.
A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

16.
This study identified sources of mercury (Hg) in downtown Toronto, Canada by analyzing gaseous elemental mercury (GEM), mercury associated with particles with sizes less than 2.5 microns (PHg < 2.5), and gaseous oxidized inorganic mercury (GOIM), commonly referred to as reactive gaseous mercury (RGM), and air pollutants (CO, NOx, O3, PM2.5, SO2) concentrations between Dec 2003 and Nov 2004. The data were analyzed using Positive Matrix Factorization (PMF) model, Principal Components Analysis (PCA), ratio analysis, back trajectories, and correlation analyses. The analyses suggest industrial sources (chemical production, metal production, sewage treatment), rather than coal combustion, were the major contributors to measured Hg levels. Overlap in source profiles for the Hg sources listed in the Canadian National Pollutant Release Inventory (NPRI) and lack of source profiles for urban sources were the major limitations to positively identifying sources from the PMF and PCA factors. Correlation analyses revealed direct emissions were the sources of GOIM in spring, summer, and fall, and the occurrence of GEM oxidation by ozone in the summer. Elevated Hg events are attributed to emissions from urban sources near the sampling site, regional point sources, and photochemical processes involving ozone.  相似文献   

17.
PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter) speciation data collected between 2003 and 2005 at two United State Environmental Protection Agency (US EPA) Speciation Trends Network monitoring sites in the South Coast area, California were analyzed to identify major PM2.5 sources as a part of the State Implementation Plan development. Eight and nine major PM2.5 sources were identified in LA and Rubidoux, respectively, through PMF2 analyses. Similar to a previous study analyzing earlier data (Kim and Hopke, 2007a), secondary particles contributed the most to the PM2.5 concentrations: 53% in LA and 59% in Rubidoux. The next highest contributors were diesel emissions (11%) in LA and Gasoline vehicle emissions (10%) in Rubidoux. Most of the source contributions were lower than those from the earlier study. However, the average source contributions from airborne soil, sea salt, and aged sea salt in LA and biomass smoke in Rubidoux increased.To validate the apportioned sources in this study, PMF2 results were compared with those obtained from EPA PMF (US EPA, 2005). Both models identified the same number of major sources and the resolved source profiles and contributions were similar at the two monitoring sites. The minor differences in the results caused by the differences in the least square algorithm and non-negativity constraints between two models did not affect the source identifications.  相似文献   

18.
Abstract

The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic‐related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24‐hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature‐resolved carbon fractions also enhanced separations of carbon‐rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate‐rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature‐resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   

19.
Abstract

A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

20.
This paper presents results from positive matrix factorization (PMF) of organic molecular marker data to investigate the sources of organic carbon (OC) in Pittsburgh, Pennsylvania. PMF analysis of 21 different combinations of input species found essentially the same seven factors with distinctive source-class-specific groupings of molecular markers. To link factors with source classes we directly compare PMF factor profiles with actual source profiles. Six of the PMF factors appear related to primary emissions from sources such as motor vehicles, biomass combustion, and food cooking. Each primary factor contributed between 5% and 10% of the annual-average OC with the exception of the cooking related factor which contributed 20% of the OC. However, the contribution of the cooking factor was sensitive to the specific combinations of input species. PMF could not differentiate between gasoline and diesel emissions, but the aggregate contribution of primary emissions from these two source classes is estimated to be less than 10% of the annual-average OC. One factor appears related to secondary organic aerosol based on its substantial contribution to biogenic oxidation products. This secondary factor contributed more than 50% of the summertime average OC. Reasonable agreement was observed between the PMF results and those of a previously published chemical mass balance (CMB) analysis of the same molecular marker dataset. Individual PMF factors are correlated with specific CMB sources, but systematic biases exist between the two estimates. These biases were generally within the uncertainty of the two estimates, but there is also evidence that PMF is not cleanly differentiating between source classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号