首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
ABSTRACT

Seagrass (Cymodocea nodosa) ability to remove cadmium and nickel ions from single metal solutions was investigated in the present study. Metal ions were measured in the solution using an atomic absorption spectrophotometer. Various operational parameters (initial pH, biomass dose, metal ion concentration, and contact time) were tested and found to affect the uptake capacity of Cd (II) and Ni (II). More than 70% of biosorption capacity occurred in the first few minutes for both metal ions. The pseudo-second-order kinetic model and the Langmuir model were found to best fit the experimental data of Cd (II) and Ni (II) biosorption. The maximum uptake capacity (qmax) was 11.6 and 16.7?mg.g?1 for Cd (II) and Ni (II), respectively. The biosorbent was characterised using Fourier transform infrared spectrometry (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The infrared spectrum demonstrated that hydroxyl, carboxyl, and phenolic functional groups are the major binding sites for Cd (II) and Ni (II) metals. The ion exchange mechanism plays an important role during biosorption process as shown in EDX analysis. Our results conclude that marine macrophyte C. nodosa can be used as a low-cost biosorbent for the removal of Cd (II) and Ni (II) in wastewater.  相似文献   

2.
The possibility to include in expanded clay little amounts of metallic ions present in waste material, without significant influence on the environment, was investigated. In this article, known quantities of cadmium(II), lead(II), chromium(III), and chromium(VI) were added to a mixture of raw pit clay, adding a small amount of mineral oil. The resultant paste was heated at 1200°C, in conditions to provide the commercial product with the best characteristics of lightness. The obtained pellets were analyzed in two ways. A sample of expanded clay was crushed, added to with KNaCO3 and melted. The melted mass, after cooling, was dissolved in HCl or in water and analyzed. The composition of the raw pit clay was analyzed as a blank. In parallel, pellets were subjected to a leaching process and the eluate was analyzed for the added cations. The concentration of the metal ions in the leached water is negligible compared with that generally admitted in drinking water.  相似文献   

3.
The adsorption of copper(II) ions from aqueous solutions by the green horse-chestnut shell was studied in a batch adsorption system. It was determined how the parameters of the adsorption process, such as time, pH, copper(II) ions concentration and sorbent dose, influence the effectiveness of copper(II) ions’ removal. The adsorption process was fast and equilibrium was established about 10?min, and near 95–97% of Cu(II) ions were removed from aqueous solution. Maximum copper(II) ions’ adsorption occurred at around pH 5. The adsorption kinetics are also described, using pseudo-first-order model and pseudo-second-order model of type 1 and 2. A comparison of the kinetics models on the overall adsorption rate showed that the adsorption system was best described by the pseudo-second-order model of type 1 (r2?=?0.999) for all initial concentrations. Another key part of this study was the use of the Freundlich model to determine the adsorption isotherm and the experimental data were in strong correspondence with this model.  相似文献   

4.
Poly(hydroxamic acid)-poly(amidoxime) chelating ligands were synthesized from poly(methyl acrylate-co-acrylonitrile) grafted acacia cellulose for removing toxic metal ions from industrial wastewaters. These ligands showed higher adsorption capacity to copper (2.80 mmol?g−1) at pH 6. In addition, sorption capacities to other metal ions such as iron, zinc, chromium, and nickel were also found high at pH 6. The metal ions sorption rate (t1/2) was very fast. The rate of adsorption of copper, iron, zinc, chromium, nickel, cobalt, cadmium and lead were 4, 5, 7, 5, 5, 8, 9 and 11 min, respectively. Therefore, these ligands have an advantage to the metal ions removal using the column technique. We have successfully investigated the known concentration of metal ions using various parameters, which is essential for designing a fixed bed column with ligands. The wastewater from electroplating plants used in this study, having chromium, zinc, nickel, copper and iron, etc. For chromium wastewater, ICP analysis showed that the Cr removal was 99.8% and other metal ions such as Cu, Ni, Fe, Zn, Cd, Pb, Co and Mn removal were 94.7%, 99.2%, 99.9%, 99.9%, 99.5%, 99.9%, 95.6% and 97.6%, respectively. In case of cyanide wastewater, the metal removal, especially Ni and Zn removal were 96.5 and 95.2% at higher initial concentration. For acid/alkali wastewater, metal ions removing for Cd, Cr and Fe were 99.2%, 99.5% and 99.9%, respectively. Overall, these ligands are useful for metal removal by column method from industrial wastewater especially plating wastewater.  相似文献   

5.
Application of Amberlite XAD-7 impregnated with morpholine dithiocarbamate (MDTC) for separation and preconcentration of trace amounts of lead, copper, cobalt, iron, nickel, cadmium and zinc and determination by ICP-AES has been described. The optimum experimental parameters, such as pH, sample flow rate, eluent and effect of matrix ions on the preconcentration were investigated. Simultaneous enrichment of the seven metals was accomplished. The t 1/2 values for sorption are 2.9, 3.3, 3.7, 3.6, 2.8, 4.1 and 2.8 respectively for Pb(II), Cu(II), Co(II), Fe(III), Ni(II), Cd(II) and Zn(II). The method was applied for the determination of trace metal ions in seawater and natural water samples. The results have been compared with extraction GFAAS method.  相似文献   

6.
ABSTRACT

Pharmaceutical compounds are considered emerging environmental pollutants that have a potential harmful impact on environment and human health. In this study, the spiky green horse-chestnut shell was used for the biosorption and removal of acetaminophen from aqueous solution. It was analysed how the parameters, like contact time, pH, mass of biosorbent and temperature, influence the effectiveness of acetaminophen removal from aqueous solutions. The equilibrium was quickly achieved after 10?min (~60%). The amount of acetaminophen adsorption slightly increased with the increase of the mass of biosorbent, and for example for an aqueous solution containing 10?mg/L of acetaminophen adsorption was increased from 62% to 81%. The promising results obtained at pH ranged between 2 and 9, which shows that the adsorption of acetaminophen did not depend on the pH and it may be a consequence of the predominant microporous sorbent and its surface charge. The result is better correlated to a pseudo-second-order kinetic model of type 2 (r 2?=?0.9992) than pseudo-first-order. A sorption mechanism of acetaminophen on biosorbent was also proposed. The sorption of acetaminophen over biosorbent is mainly preceded by hydrophilic interactions between hydroxyl and carbonyl groups in pharmaceutical molecules and hydroxyl and carboxyl groups on the surface of biosorbent.  相似文献   

7.
Resin adsorption and subsequent electrodeposition were used for nickel recovery. Treated wastewater can meet the Electroplating Pollutant Discharge Standard. The spent resin is completely regenerated by 3 BV of 4% HCl solution. 95.6% of nickel in concentrated eluent was recovered by electrodeposition. Effective recovery of high-value heavy metals from electroplating wastewater is of great significance, but recovering nickel ions from real electroplating wastewater as nickel sheet has not been reported. In this study, the pilot-scale fixed-bed resin adsorption was conducted to recover Ni(II) ions from real nickel plating wastewater, and then the concentrated Ni(II) ions in the regenerated solution were reduced to nickel sheet via electrodeposition. A commercial cation-exchange resin was selected and the optimal resin adsorption and regeneration conditions were investigated. The resin exhibited an adsorption capacity of 63 mg/g for Ni(II) ions, and the average amount of treated water was 84.6 bed volumes (BV) in the pilot-scale experiments. After the adsorption by two ion-exchange resin columns in series and one chelating resin column, the concentrations of Ni(II) in the treated wastewater were below 0.1 mg/L. After the regeneration of the spent resin using 3 BV of 4% (w/w) HCl solution, 1.5 BV of concentrated neutral nickel solution (>30 g/L) was obtained and used in the subsequent electrodeposition process. Using the aeration method, alkali and water required in resin activation process were greatly reduced to 2 BV and 3 BV, respectively. Under the optimal electrodeposition conditions, 95.6% of Ni(II) in desorption eluent could be recovered as the elemental nickel on the cathode. The total treatment cost for the resin adsorption and regeneration as well as the electrodeposition was calculated.  相似文献   

8.
Ulmus tree leaves were successfully used as a novel and efficient biosorbent for removing cadmium, (Cd(II)), from aqueous solutions in a batch system. A multivariate strategy for optimization of removal efficiency conditions of Cd(II) was carried out. A 23 full factorial design with three center points (9 runs) was performed for screening the main variables and reducing the large number of experimental runs. Initial concentration of metal ion (C m), amount of sorbent (m), and pH were considered as the three main variables at two different levels. The maximum removal efficiency of Cd(II) was achieved within 1 h contact time. It was found that all the main factors and their interactions were significant at p < 0.05. Doehlert response surface methodology was utilized (13 runs) for finding a suitable mathematical model. The analysis of variance and some statistical tests such as lack-of-fit, coefficient of determination (R 2), and residual distribution plot confirmed the validity of the model. The optimum conditions for maximum removal of Cd(II) by Ulmus tree leaves were found as pH = 3.4, m (amount of sorbent) = 0.128 g, C m (initial concentration of metal ion) = 12.1 mg L?1.  相似文献   

9.
This investigation describes the use of specially cultivated, nonliving biomass of Trichoderma harzianum as a biosorbent for the batch removal of Pb(II) from a stirred system under different experimental conditions. The metal removal depended upon pH, sorbent particle size, initial Pb(II) concentration, shaking speed, and sorption time. The optimal experimental conditions for the removal of Pb(II) by T. harzianum with an initial metal concentration of 100 mg L?1 were obtained at a particle size of 53 μm, a pH of 4.5, a shaking speed of 200 rpm, and a contact time of 720 min. The results were analyzed in terms of adsorption isotherms and kinetic models. The Freundlich isotherm model and pseudo second-order model fitted well in the data. T. harzianum proved to be a good biomaterial for accumulating Pb(II) from aqueous solutions (q = 460 mg g?1).  相似文献   

10.
The presence of contaminants in potable water is a cause of worldwide concern. In particular, the presence of metals such as arsenic, lead, cadmium, mercury, chromium can affect human health. There is thus a need for advanced techniques of water decontamination. Adsorbents based on cerium dioxide (CeO2), also named ‘ceria,’ have been used to remove contaminants such as arsenic, fluoride, lead and cadmium. Ceria and composites display high surface area, controlled porosity and morphology, and abundance of functional groups. They have already found usage in many applications including optical, semiconductor and catalysis. Exploiting their attractive features for water treatment would unravel their potential. We review the potential of ceria and its composites for the removal of toxic metal ions from aqueous medium. The article discusses toxic contaminants in water and their impact on human health; the synthesis and adsorptive behavior of ceria-based materials including the role of morphology and surface area on the adsorption capacity, best fit adsorption isotherms, kinetic models, possible mechanisms, regeneration of adsorbents; and future perspectives of using metal oxides such as ceria. The focus of the report is the generation of cost-effective oxides of rare-earth metal, cerium, in their standalone and composite forms for contaminant removal.  相似文献   

11.
The removal of toxic metals from wastewaters by biosorption, based on the metal-binding capacities of various biological materials, has received much interest. However, the success of this approach depends on economic feasibility, which can be obtained by optimization of the environmental conditions. This paper evaluates, for the first time, the use of low-cost biosorbent (date stones (DS) and palm-tree waste (PTW)) to eliminate Cu(II) from aqueous solutions. The effect of some parameters on copper biosorption has been studied using date stones and palm-tree waste as solid sorbents. Results show that the highest percentage of copper adsorption was obtained for the smallest size of the sorbent particles. The biosorption process was found to occur rapidly, i.e. the maximum sorption capacity was reached within 20 min. The process involved pseudo-second-order kinetics with an activation energy value within the normal range considered for processes, where a physical interaction between the sorbate and the sorbent solid predominated. The thermodynamic parameters of the copper ions uptake onto the solid sorbents indicated that, the process was endothermic and proceeds spontaneously from the date stones. However, the thermodynamic studies of the adsorption of copper on palm-tree waste indicated that the process was exothermic and proceeds spontaneously.  相似文献   

12.
The technical feasibility of using a suitable sorbent for the removal of some heavy metal ions from their aqueous solutions was investigated. The scope of the work covers the use of low-class native wool or wool wastes from industrial processes or from recycled woolen textiles for the removal of copper, nickel, cobalt, chromium, and zinc ions from their effluents. The sorption efficiency of the aforementioned metals by wool is in the following order: copper?>?cobalt?=?nickel?>?zinc?>?chromium.

The effect of time of sorption, temperature of the effluent, and concentration of metal ions on the rate of sorption was examined. The effect of oxidation or reduction of wool on its sorption power of copper ions is studied. The reduced wool was found to be better than native or oxidised wool in the sorption of copper metal from its effluents. The reuse of wool as metal sorber after elution of the metal, using hydrochloric acid, was also studied. It was found that wool can be reused for sorption after elution of copper up to 25 times of elution; a very limited amount of permanently fixed copper was observed. The use of sufficient woolen layers displays the best way of obtaining an effluent of zero copper content.  相似文献   

13.
The competitive adsorption and desorption of Pb(II) and Cu(II) ions in the soil of three sites in North China were investigated using single and binary metal solutions with 0.01 mol·L-1 CaCl2 as background electrolyte. The desorption isotherms of Pb(II) and Cu(II) were similar to the adsorption isotherms, which can be fitted well by Freundlich equation (R2>0.96). The soil in the three sites had greater sorption capacities for Pb(II) than Cu(II), which was affected strongly by the soil characteristics. In the binary metal solution containing 1∶1 molar ratio of Pb(II) and Cu(II), the total amount of Pb(II) and Cu(II) adsorption was affected by the simultaneous presence of the two metal ions, indicating the existence of adsorption competition between the two metal ions. Fourier transform infrared (FT-IR) spectroscopy was used to investigate the interaction between soil and metal ions, and the results revealed that the carboxyl and hydroxyl groups in the soil were the main binding sites of metal ions.  相似文献   

14.
钠化改性膨润土对Cd2+的吸附研究   总被引:18,自引:0,他引:18  
通过等温吸附试验,研究了钙基膨润土及钠化改性膨润土对Cd^2 的吸附,并与土壤对Cd^2 的吸附进行了对比.试验表明,钠化改性膨润土对Cd^2 有很好的吸附作用,可用于重金属污染土壤的治理,pH值是影响吸附效果的一个重要因素。  相似文献   

15.
The biosorption potential of processed walnut shell for Pb(II) and Cd(II) ions from aqueous solutions was explored. The effects of pH, contact time, initial ion concentration, and amount of dried adsorbent were studied in batch experiments. The maximum adsorption was achieved within the pH range 4.0–6.0. The equilibrium data were well fitted by the Langmuir isotherm model. The maximum monolayer adsorption capacities were found to be 32?g?kg?1 and 11.6?g?kg?1 for Pb(II) and Cd(II) ions, respectively. Kinetic data were best described by the pseudo-second-order model. The structural features of the adsorbent were characterized by Fourier transform infrared spectroscopy, which confirmed the involvement of hydroxyl (–OH), carboxyl (–COO), and carbonyl (C=O) groups in metal sorption. This readily available adsorbent is efficient in the uptake of Pb(II) and Cd(II) ions from an aqueous solution and could be used for the treatment of wastewater streams bearing these metal ions.  相似文献   

16.
Husk of tur dal (Cajanus cajan) was investigated as a new biosorbent for the removal of Fe (III) and Cr (VI) ions from aqueous solutions. Parameters like agitation time, adsorbent dosage and pH were studied at different initial Fe (III) and Cr (VI) concentrations. The biosorptive capacity of the Tur dal husk was dependent on the pH of the chromium and iron solution, with pH 2 and 2.5 respectively being optimal. The adsorption data fit well with Langmuir and Freundlich isotherm models. The practical limiting adsorption capacity (qmax) calculated from the Langmuir isotherm was 96.05 mg of Cr(VI)/ g of the biosorbent at an initial pH of 2.0 and 66.65 mg/g at pH 2.5. The infrared spectra of the biomass revealed that hydroxyl, carboxyl and amide bonds are involved in the uptake of Cr (VI) and Fe (III) ions. Characterisation of tur dal husk has revealed that it is an excellent material for treating wastewaters containing low concentration of metal ions.  相似文献   

17.
• A ZnO-biochar hybrid composite was prepared by solvothermal-pyrolysis synthesis. • The superhydrophobic composite is suitable for selective recovery of Re(VII). • The adsorption mechanism is elucidated by experiments and material characterization. The recovery of scattered metal ions such as perrhenate (Re(VII)) from industrial effluents has enormous economic benefits and promotes resource reuse. Nanoscale-metal/biochar hybrid biosorbents are attractive for recovery but are limited by their insufficient stability and low selectivity in harsh environments. Herein, a superstable biochar-based biosorbent composed of ZnO nanoparticles with remarkable superhydrophobic features is fabricated, and its adsorption/desorption capabilities toward Re(VII) in strongly acidic aqueous solutions are investigated. The ZnO nanoparticle/biochar hybrid composite (ZBC) exhibits strong acid resistance and high chemical stability, which are attributable to strong C-O-Zn interactions between the biochar and ZnO nanoparticles. Due to the advantages of its hydrolytic stability, superhydrophobicity, and abundance of Zn-O sites, the ZBC proves suitable for the effective and selective separation of Re(VII) from single, binary and multiple ion systems (pH= 1), with a maximum sorption capacity of 29.41 mg/g. More importantly, this material also shows good recyclability and reusability, with high adsorption efficiency after six adsorption-desorption cycles. The findings in this work demonstrate that a metal/biochar hybrid composite is a promising sorbent for Re(VII) separation.  相似文献   

18.
Utilization of Amberlite XAD-2 surface modified by covalent immobilization of brilliant green through an azo spacer for adsorptive enrichment of Sn(II) from environmental and biological samples was highlighted. The resulting resin was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, and scanning electron microscopy. The resin retained Sn(II) ions at an optimum pH of 9.5 with a sorption capacity of 40 mg g?1. The modified sorbent could be reused for 10 cycles without significant changes in sorption capacity. The recovery of Sn(II) was 98% when eluted with 0.1 mol L?1 ethylenediaminetetraacetic acid. Scatchard analysis revealed that binding sites in the modified resin were homogeneous. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Temkin, and Redlich–Peterson isotherm models. The method was applied with satisfactory results for determination of Sn(II) ions in human plasma and sea water.  相似文献   

19.
A procedure for separation and enrichment of Cd(II) and Ni(II) ions based upon carrier element-free coprecipitation by using an organic coprecipitant, 2-{4-[2-(1H-Indol-3-yl)ethyl]-3-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl}-N′-(3-fluoro-phenylmethyliden) acetohydrazide, prior to their flame atomic absorption spectrometric detections has been developed. The effects of varied experimental conditions on the performance of the developed method such as pH, sample volume, amount of coprecipitating agent, etc. were evaluated in detail on the recovery of analyte ions, and the influences of some anions and cations were investigated. The limits of detection for Cd(II) and Ni(II) ions based on three times the standard deviation of the blanks (N: 10) were obtained as 0.70 μg L?1 and 1.21 μg L?1, respectively. The accuracy of the method was tested by analyzing a certified reference material and by spike tests. The method was applied to determine the levels of cadmium and nickel in stream and sea water, rice, red lentil, and wheat samples.  相似文献   

20.
Eichhornia crassipes (Ec) and Lemna minor (Lm) are aquatic plants. They are considered as weeds of the water and approach being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time they are known to readily remove heavy metal ions from water. This paper considers the use of non-living plants as novel and inexpensive biosorbent for the removal of As(V) from watersheds. In the first place they were conditioned and characterised to determine their physicochemical and surface properties and in the second place their adsorption properties for As(V) from aqueous solution were evaluated considering the toxicity of this metalloid in the environment. It describes the methodology to prepare the non-living biomasses; the physicochemical characterisation by SEM, XRD, FTIR, TGA analyses and surface characterisation of Ec and Lm by specific surface, hydration kinetic, point of zero charge determination by mass titration, active site density and XPS analysis are described. Both studied biomasses were found to be potential bio-sorbents for arsenic ions from aqueous solution. According to their efficiency to remove arsenic, they can be used in a very low cost metalloid ions removal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号