首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2种水稻土中Cu(Ⅱ)和Pb(Ⅱ)的解吸动力学   总被引:1,自引:0,他引:1  
用一次平衡法研究了2种水稻土表面吸附态Cu(Ⅱ)和Pb(Ⅱ)的解吸动力学行为及柠檬酸和酒石酸对2种重金属离子解吸的影响。结果表明,虽然2种土壤对Pb(Ⅱ)的吸附量比Cu(Ⅱ)高得多,但无论在单一重金属体系还是Cu(Ⅱ)和Pb(Ⅱ)共存体系中,Cu(Ⅱ)的解吸量均大于Pb(Ⅱ),湖州水稻土Cu(Ⅱ)的解吸量大于嘉兴水稻土,说明土壤对重金属离子的吸附亲和力越大,吸附的重金属离子越不易解吸。用E lovich方程拟合动力学数据可以获得比较满意的结果。解吸速率与时间的关系曲线表明,Cu(Ⅱ)和Pb(Ⅱ)的解吸速率随时间的增加迅速减小。Cu(Ⅱ)的解吸速率大于Pb(Ⅱ),柠檬酸和酒石酸不仅使重金属的解吸量增加,而且使Cu(Ⅱ)和Pb(Ⅱ)的解吸速率大大提高。2种有机酸对Cu(Ⅱ)解吸的促进作用大于Pb(Ⅱ),柠檬酸的促进作用大于酒石酸。  相似文献   

2.
The Pb (II) adsorption/desorption mechanism onto a natural sandy loam soil was studied by batch experiments at different pHs (3.0, 4.5, 6.0), at different ionic strength (0, 0.02 and 0.1 M) and with different electrolytes solutions of NaCl, NaAcO and NaNO3. Pb was strongly adsorbed onto the soil due to the formation of a mix of inner-sphere and outer-sphere complexes. Experimental adsorption data fitted Freundlich and Langmuir isotherms. The desorption results with 0.1 M Mg (NO3)2 and 0.1 M NaAcO solutions corroborated the mechanisms proposed. The strong binding of Pb (II) to high affinity sites on soil minerals seems to be responsible for the extent of hysteresis. The sandy loam soil under study thus constitutes a natural control for Pb contamination.  相似文献   

3.
First determination of Cu adsorption on soil humin   总被引:1,自引:0,他引:1  
Humic substances are heterogeneous mixtures of organic compounds occurring in huge amounts mainly in waters, soils, sediments and organic wastes. They are formed during the decay of living organisms. They play a very important role in many environmental processes including carbon sequestration, water cleaning and retention, soil erosion, fertility and pollutant retention. However, due to their complex nature, humic substances are still poorly characterized and much less known than living matter. Humin is the most insoluble and, in turn, the least understood fraction of humic substances. To our knowledge, no information is currently available on the adsorption and desorption behaviors of metal ions on soil humin. Here, we report the adsorption and desorption properties of Cu(II) on humin and humic acids isolated from a forest soil in northeast China using the batch equilibration method. Solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy was used to characterize and compare the chemical structures of humin and humic acid. The batch experiments’ results show that humin has a lower adsorption capacity and higher adsorption reversibility for Cu(II) than humic acid. The adsorption isotherms well fitted both the Langmuir and Freundlich equations. Humin, therefore, plays an important role in controlling the fate, transport and bioavailability of Cu(II) in the environment. The 13C CPMAS NMR spectra showed that compared with humic acid, humin was higher in alkyl C, carbohydrate C and phenolic C and was lower in methoxyl C, aryl C and carbonyl C. These findings mean that humin was less alkylated, more aliphatic and more hydrophobic.  相似文献   

4.
In this study, high capacity Chestnut shell, a waste product from the chestnut sugar production industry, was successfully applied to remove Pb (II) and Cd (II) ions from aqueous solutions. Maximum adsorption capacities were found as 541.25?mg/g and 75.86?mg/g for Pb(II), and Cd(II) respectively. Several important parameters influencing the adsorption of Pb(II) and Cd(II) ions such as contact time, pH, temperature and effect of metal concentration were investigated systematically by batch experiments. Langmuir and Freundlich adsorption models were used to describe adsorption isotherms and constants. The thermodynamic parameters, such as standard free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°), of the adsorption process were calculated. The adsorbents were characterised by scanning electron microscopy. It has been observed from the experimental results that in case of both Cd (II) and Pb (II), pseudo 2nd order kinetic model. From the results, Chestnut Shell are considered as an effective, low cost and environmental friendly adsorbent for the removal of Pb (II) and Cd (II) from wastewater.  相似文献   

5.
滩涂围垦土壤是重金属等难降解污染物的主要最终归宿场所之一,其重金属的解吸将影响重金属的迁移性、生物有效性和潜在毒性,研究重金属的解吸对土壤污染评价、修复及环境容量预测至关重要.研究了烟气脱硫石膏对广州市南沙滩涂围垦土壤重金属的解吸效果,并分析了烟气脱硫石膏对重金属形态的影响.在离心管中称取20.0 g过0.25mm筛土样,加入20 mL水和不同量的烟气脱硫石膏,在室温下于恒温振荡器振荡,风干研碎后用原子吸收分光光度法测定重金属全量,并用Tessier连续提取法研究了处理前后重金属形态变化.研究结果表明,随着脱硫石膏施用量的增加,经过振荡离心后的滩涂围垦土壤中重金属质量分数先急剧下降,之后变化趋于平缓.与原土相比各重金属最大解吸率分别为:Cd 30.38%,Cu17.73%,Ni 15.00%,Zn 14.19%,Pb 9.46%,Cr 8.89%.比较处理前后重金属的形态变化,发现各重金属的可交换态解吸率均达50%以上,并且重金属碳酸盐结合态质量分数也有减少.说明烟气脱硫石膏能降低土壤对重金属的吸附,经振荡离心后能降低土壤中重金属的毒性和生物可利用性.  相似文献   

6.
The adsorption of copper, zinc, cobalt, lead and cadmium ions onto Colpomenia sinuosa was studied as a function of contact time, initial metal ion concentration and initial pH. In addition, desorption studies were performed. Characterisation of this adsorbent was also confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analysis. Batch adsorption experimental data were analysed using Langmuir, Freundlich and Dubinin–Raduschkevich (D–R) adsorption isotherms. The results indicated that the biosorption equilibrium was well described by both the Freudlich and D–R isotherms. Moreover, sorption kinetics was performed and it was observed that equilibrium was reached in<60 min, which could be described by the pseudo-second-order kinetic model for all heavy metals. The sorption of heavy metals onto the biomass was largely dependent on the initial solution pH. The elution efficiency for heavy metal ions desorption from C. sinuosa was determined for 0.1 M HCl, 1.0 M HCl and 1.0 M HNO3. Desorption efficiency and also adsorption capacity were highest for Pb(II). The results indicate that C. sinuosa has great potential for the removal of heavy metals in an ecofriendly process.  相似文献   

7.
The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd2+, Cu2+ and Pb2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity towards the three metal ions. The maximal adsorption capacity of MnO2 for Cd2+, Cu2+ and Pb2+ were 1.23, 2.25 and 2.60 mmol·g-1, respectively. And that for FMBO were 0.37, 1.13, and 1.18 mmol·g-1 and for FeOOH were 0.11, 0.86 and 0.48 mmol·g-1, respectively. The adsorption behaviors of the three metal ions on the three adsorbents were all significantly affected by pH values and heavy metal removal efficiency increased with pH increased. The Langmuir and Freundlich adsorption models were used to describe the adsorption equilibrium of the three metal ions onto the three adsorbents. Results showed that the adsorption equilibrium data fitted well to Langmuir isotherm and this indicated that adsorption of metal ions occurred on the three metal oxides adsorbents limited to the formation of a monolayer. More negative charged of MnO2 surface than that of FMBO and FeOOH could be ascribed by lower pHiep of MnO2 than that of FMBO and FeOOH and this could contribute to more binding sites on MnO2 surface than that of FMBO and FeOOH. The higher metal ions uptake by MnO2 than FMBO and FeOOH could be well explained by the surface charge mechanism.  相似文献   

8.
泥炭和褐煤对Zn^2+,Cu^2+,Pb^2+等重金属离子的吸附特征   总被引:11,自引:3,他引:11  
顾健民  丁德润 《环境化学》1996,15(4):343-346
利用天然有机吸附剂泥炭和褐煤对重金属离子Zn^2+,Cu^2+,Pb^2+的单组分水溶液进行吸附研究。对吸附模型,吸附时间,不同吸附剂投放量,金属离子种类等给予表征,基本符合Langmuir吸附等温线。  相似文献   

9.
● Organic matter content significantly affected adsorption of E2/EE2 on saline soil. ● EE2 possessed higher competition intensity for adsorption sites than E2. ● The adsorption of E2/EE2 on saline soil was a spontaneous exothermic process. ● Desorption capacity of EE2/E2 accounted for 40%/78% of the total adsorption capacity. Soil organic matter content was the main driving factor affecting adsorption and desorption process of 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on saline soil. The adsorption and desorption of E2 and EE2 on three saline soils showed the similar behavior that soil with the highest organic content possessed the highest adsorption capacity and the lowest desorption capacity for E2 and EE2. The adsorption capacity of untreated soil samples (with organic matter) was larger than that of soil samples without organic matter. For soil with the largest adsorption capacity, adsorption capacity of E2/EE2 on the untreated soil and soil colloid (with organic matter) respectively reached 0.15/0.30 μg/g and 0.16/0.33 μg/g while the soil and soil colloid without organic matter hardly adsorbed pollutants. The adsorption capacity of E2/EE2 at the initial concentration of 100 μg/L was 25/15 times higher than that at the initial concentration of 5 μg/L. E2 and EE2 had the same adsorption sites on saline soil while EE2 possessed higher competition intensity for adsorption sites than E2. Pseudo-first-order model (R2 = 0.995–0.986) and Langmuir model (R2 = 0.989–0.999) could better fit the adsorption process of E2 or EE2. The thermodynamic study further showed that the adsorption of E2/EE2 on saline soil was a spontaneous exothermic process. The desorption capacity of EE2/E2 accounted for 40%/78% of the total adsorption capacity to possibly exert potential risk to the groundwater. The variation of the salinity led to the variation of soil organic carbon which subsequently changed the adsorption and desorption behaviors of endocrine disrupting chemicals in coastal saline soil. This study provides a new insight on the interfacial behavior of endocrine disrupting chemicals on saline soil.  相似文献   

10.
针对重金属及多溴联苯醚(PBDEs)复合污染问题,以蜡状芽孢杆菌(Bacillus cereus)复合菌为吸附材料,研究了十溴联苯醚(BDE209)对蜡状芽孢杆菌复合菌吸附及释放金属离子的影响.结果表明,蜡状芽孢杆菌复合菌对低浓度的Pb(II)(0.712mg·L-1)、Zn(II)(4.844mg·L-1)具有快速、高效、稳定的吸附能力,最高吸附率分别达到98.31%和97.83%;对低浓度的Cu(II)(1.915mg·L-1)也能起到一定的去除作用,吸附率最高可达59.90%.复合菌吸附重金属离子的同时,释放了其他金属离子:Ca(II)、K(I)、Na(I),且释放总量大于吸附总量.不同浓度的BDE209对复合菌吸附重金属产生不同的影响.1mg·L-1的BDE209基本表现为促进复合菌对重金属的吸附;而10mg·L-1的BDE209在0~4h之间促进复合菌对Pb(II)、Zn(II)的吸附,在反应4h后明显抑制吸附作用,而对Cu(II)则始终表现为促进作用.BDE209对金属离子释放的影响主要体现在反应的初始阶段(0~4h),表现为高浓度的BDE209减缓K(I)、Na(I)的释放.  相似文献   

11.
土壤中铅的吸附-解吸行为研究进展   总被引:39,自引:4,他引:39  
铅是重要的土壤重金属污染元素之一,了解铅在土壤中的物理化学行为,有利于预防和修复土壤的铅污染。土壤中铅的吸附-解吸行为,依吸附机理的不同,分为专性吸附和非专性吸附。土壤铅吸附的机理还存在不同的观点,如水解吸附/非水解吸附机理,单分子吸附/双分子吸附机理等。影响土壤中铅吸附-解吸行为的主要因素,有土壤矿物组成、土壤有机质、pH、温度、竞争离子等。文章最后对描述土壤铅吸附过程的主要数学方程(Langmuir方程、Freundlich方程和Temkin方程)作了论述。  相似文献   

12.
干旱区绿洲灌漠土Cu、Zn和Pb的吸附解吸特征   总被引:7,自引:0,他引:7  
土壤重金属吸附解吸是影响土壤系统中重金属移动性和归宿的主要过程,影响重金属的生物有效性以及重金属在食物链中的传递等.配制一系列不同浓度的重金属,灌漠土对重金属溶液进行吸附实验24 h以达到平衡,再用硝酸铵和乙酸铵进行解吸实验24 h以达到平衡.利用热力学吸附平衡法,对西北干旱区绿洲灌漠土重金属Cu、Ni和Pb的吸附解吸行为进行序批实验研究.实验结果表明:(1)灰漠土在常温下对铜、锌和铅重金属离子的吸附等温线符合Freundlich型吸附模式,灰漠土对重金属铜、锌和铅的吸附能力由强到弱的顺序为:铅,铜,锌.(2)硝酸铵和乙酸铵解吸重金属的量与灰漠土吸附重金属量呈现出线性正相关,乙酸铵解吸重金属的量比硝酸铵解吸重金属的量大,两种解吸剂对铜、锌和铅重金属离子的解吸能力由大到小的顺序都为:铜,锌,铅,说明了一般外源的铜、锌和铅进入土壤以后,铜和锌可能比铅容易向四周转移.(3)硝酸铵和乙酸铵的解吸率呈谷形曲线,开始时硝酸铵和乙酸铵解吸重金属量的百分比随灰漠土吸附重金属量的增加而减小,在吸附量达到某一特定值时,解吸率随吸附量的增加而增加.灰漠土对铜、锌和铅的吸附作用以专性吸附为主,被灰漠土吸附的铜、锌和铅重金属离子较难解吸.  相似文献   

13.
褐煤经磺化及碱化处理对重金属离子吸附性能研究   总被引:15,自引:0,他引:15  
张怀成  王在峰 《环境化学》1999,18(5):482-487
褐煤经磺化和碱化处理对褐煤吸附重金属的性能影响显著,通过对金属离子Cu^2+,Pb^2+,Zn^2+,Cd^2+,Ni^2+的单组分或多组分溶液进行吸附研究,对比了吸附速率、吸附容量、吸附选择性、耐酸性以及抗干扰能力等方面的差异,探讨了磺化褐煤和碱化褐煤对重金属离子的吸附机理,指出了今后的研究方向。  相似文献   

14.
Sorption of metal ions by soil and clay minerals is a complex process involving different mechanisms, and controlled by different variables that can interact. The aim of this work was to study the retention mechanisms of Pb ions on different soil samples. Surface soils were sampled from Guilan and Hamadan provinces in north and northwest of Iran with temperate and semiarid climates. The adsorption isotherms of Pb on the soils have been studied at 15, 27 and 37°C. The adsorption data for different soils were fitted into Langmuir and Freundlich models. Temperate soil samples had higher clay content, cation exchange capacity, dichromate (oxidable) organic carbon, total Kjeldahl-nitrogen, biological activity, amorphous and crystalline Fe and Al, but semiarid soil samples had higher sand content, pH, equivalent calcium carbonate, available P and K. Lead adsorption data obtained from semiarid soils against those obtained from temperate soils were better fitted in both Langmuir and Freundlich models. Langmuir constants Q 0 for Pb adsorption in semiarid soils were considerably lower than those for Pb adsorption in temperate soils. However, the binding energy (K L) of Pb and Freundlich constant n were higher for data of semiarid soils. The effect of temperature on the Pb adsorption was positive especially in temperate soils; however, soil properties had higher effects on Pb adsorption.  相似文献   

15.
长三角和珠三角农业土壤对Pb、Cu、Cd的吸附解吸特性   总被引:6,自引:0,他引:6  
研究了长江三角州和珠江三角州10种代表性农业土壤对重金属Pb、Cu和Cd的吸附与解吸特性。结果表明:大多数土壤对重金属有较强吸附能力,土壤性质对重金属吸附与解吸行为有很大影响。其中,pH值是影响土壤对重金属吸附与解吸的最重要因素,土壤重金属吸附量随pH值增加而增加。土壤pH值和有机质或粘粒含量较高的土壤(如乌栅土、青紫泥田、黄斑田),其对重金属吸附能力高于pH值和有机质或粘粒含量较低的土壤(如黄筋泥、粉泥田)。重金属解吸量随重金属吸附量和土壤重金属饱和度增加呈指数增加趋势;土壤对重金属的吸附能力从强至弱依次为Pb、Cu、Cd;当3种重金属共存时,重金属之间竞争能力强弱顺序与吸附能力顺序相同。重金属之间竞争作用随土壤酸度和重金属污染程度的增加而增强。  相似文献   

16.
The biosorption of heavy metals is considered to be one of the best alternatives for the treatment of wastewater. The metal binding capacity of algae and acid-treated algae is investigated to find out the removal characteristics of Cr(VI), Ni(II) and Cu(II) ions from single metal solutions. Batch experiments are conducted and the study is extended to investigate the effect of pH, amount of adsorbent and adsorbate concentration on the extent of biosorption. The results indicate that the adsorption capacity of algae depends strongly on pH. The maximum adsorption of Cr(VI), Ni(II) and Cu(II) occurs at pH values of 2, 7 and 4.3, respectively. The adsorption process follows first-order kinetic equation. The data obtained are correlated with Freundlich and Langmuir adsorption isotherms.  相似文献   

17.
菜园土壤铜吸附--解吸特性的研究   总被引:2,自引:0,他引:2  
研究了菜园土壤铜的吸附—解吸特性。结果表明 ,3种菜园土壤吸附 Cu2 的量均随平衡液中Cu2 浓度的增加而增大 ,可用 L angmuir方程和 Freundlich方程来描述。由 Langmuir方程求得的菜园土壤对 Cu2 的最大吸附量和最大缓冲容量的大小顺序为 :黄松土 >江涂土 >粉泥土 ,菜园土壤对 Cu2 的解吸量和解吸率均随其吸附量的增加而增加 ,吸附量与解吸量之间呈显著或极显著线性正相关。  相似文献   

18.
19.
In this paper, adsorption properties of a pretreated of Cladosporium sp. for Cu2 were studied. The fungi pretreated with some chemical reagents exhibited higher Cu2+ removal capacities than native biomass. The optimum chemical reagent was 0.2M NaOH. After 0.2M NaOH pretreatment, optimum conditions of biosorption were found to be pH 5.0, temperature 35 degrees C, and stirring speed of 100rpm. Equilibrium isotherms were obtained from adsorption experiments and the biosorption maximun capacity obtained was at 28.31mg/g. The biosorbed metal ions were effectively eluted by 0.05M HNO3 solution. After eluting, the biosorbed metal ions biomass was regenerated by washing with deionized water and then contacted with a solution containing 0. 1M of Ca2+, Mg2+ ions before further adsorption tests. The pretreated fungi biomass could be used for three cycles: biosorption, elution of biosorbed ion, regeneration of biomass.  相似文献   

20.
Poly(hydroxamic acid)-poly(amidoxime) chelating ligands were synthesized from poly(methyl acrylate-co-acrylonitrile) grafted acacia cellulose for removing toxic metal ions from industrial wastewaters. These ligands showed higher adsorption capacity to copper (2.80 mmol?g−1) at pH 6. In addition, sorption capacities to other metal ions such as iron, zinc, chromium, and nickel were also found high at pH 6. The metal ions sorption rate (t1/2) was very fast. The rate of adsorption of copper, iron, zinc, chromium, nickel, cobalt, cadmium and lead were 4, 5, 7, 5, 5, 8, 9 and 11 min, respectively. Therefore, these ligands have an advantage to the metal ions removal using the column technique. We have successfully investigated the known concentration of metal ions using various parameters, which is essential for designing a fixed bed column with ligands. The wastewater from electroplating plants used in this study, having chromium, zinc, nickel, copper and iron, etc. For chromium wastewater, ICP analysis showed that the Cr removal was 99.8% and other metal ions such as Cu, Ni, Fe, Zn, Cd, Pb, Co and Mn removal were 94.7%, 99.2%, 99.9%, 99.9%, 99.5%, 99.9%, 95.6% and 97.6%, respectively. In case of cyanide wastewater, the metal removal, especially Ni and Zn removal were 96.5 and 95.2% at higher initial concentration. For acid/alkali wastewater, metal ions removing for Cd, Cr and Fe were 99.2%, 99.5% and 99.9%, respectively. Overall, these ligands are useful for metal removal by column method from industrial wastewater especially plating wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号