首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hilkert Colby, Elizabeth J., Thomas M. Young, Peter G. Green, and Jeannie L. Darby, 2010. Costs of Arsenic Treatment for Potable Water in California and Comparison to U.S. Environmental Protection Agency Affordability Metrics. Journal of the American Water Resources Association (JAWRA) 46(6):1238–1254. DOI: 10.1111/j.1752-1688.2010.00488.x Abstract: The United States (U.S.) federal standard for arsenic in potable water systems is only the second water quality standard in which the U.S. Environmental Protection Agency (USEPA) administrator used “discretionary authority to establish a less stringent standard” based on the results of cost-benefit analyses. Based on the findings that a “standard of 3 μg/l would be feasible but not justified,” the revised maximum contaminant level (MCL) lowered the allowable arsenic concentration from 50 to 10 μg/l in 2002. In 2009, approximately 145 systems in California were out of compliance. The objectives were to gather performance and cost data from arsenic treatment systems in California to compare with data from the USEPA demonstration sites as well as with the USEPA affordability metrics for drinking water. The median cost of compliance with the revised arsenic MCL for the 36 surveyed systems was $1.95/1,000 gallons (2008 dollars), which is 69% of the average cost of delivered tap water in the U.S. in 2008 ($2.81/1,000 gallons). Additionally, 22% of the surveyed systems in California paid more than the maximum predicted cost of compliance with the revised arsenic MCL ($5.05/1,000 gallons). The largest variation in cost was seen in the systems that treated <500 gpm. For the systems utilizing adsorption, systems obtained between 20 and 80% of the expected bed volumes prior to breakthrough, indicating the need for better prediction of performance.  相似文献   

2.
A methodology consisting of ordinal logistic regression (OLR) is used to predict the probability of occurrence of arsenic concentrations in different threshold limits in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered a number of maximum contaminant level (MCL) options as threshold values to estimate the probabilities of occurrence of arsenic in ranges defined by a given MCL of 3, 5, 10, 20, and 50 μg/l and a detection limit of 1 μg/l. The fit between the observed and predicted probability of occurrence was around 83 percent for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic in the CONUS. The shallow ground water of the western United States is more vulnerable than the eastern United States. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The risk assessment showed that counties in southern California, Arizona, Florida, and Washington and a few others scattered throughout the CONUS face a high risk from arsenic exposure through untreated ground water consumption. A simple cost effectiveness analysis was performed to understand the household costs for MCL compliance in using arsenic contaminated ground water. The results showed that the current MCL of 10 μg/l is a good compromise based on existing treatment technologies.  相似文献   

3.
The main objective of the study was to find a suitable iron to arsenic ratio in water to reduce arsenic to 5 μg/L or lower through sand filtration. Experiments were conducted by varying the quantity of iron(II) while keeping the arsenic concentration at 100 μg/L. A mixture of iron (II) and arsenic at different ratios (10:1, 20:1, 30:1 and 40:1) was pumped to the sand filters in a down flow mode and effluent arsenic and iron were analyzed. It was found that a ratio of iron to arsenic of 40:1 was necessary to ensure an effluent arsenic concentration of 5 μg/L or lower. Iron in the filtrate was found to be below 0.1 mg/L at all times.  相似文献   

4.
Watershed monitoring programs depend on water quality characterization data collected for many parameters, at many times and places, and with limited resources. Our objective is to present a strategy that reduces the measured parameters, locations, and frequency without compromising the quality of the monitoring program. One year of twice-monthly (growing season) and monthly (dormant season) water quality data collected from 17 lake and 10 tributary sites are used in conjunction with multivariate statistical techniques to improve the utility of collected data by identifying key parameters and monitoring locations. Factor analysis shows that tributary water quality data consists of three components-stormwater runoff, municipal and industrial discharges, and ground water-which can be distinguished using total suspended solids, total dissolved solids, and alkalinity plus soluble reactive P, respectively. Lake water quality characterization is more ambiguous than tributary water quality characterization, but factor analysis indicates that anoxia associated with lake stratification is the largest source of lake water quality variation, followed by nutrient abundance, and finally by biomass abundance. Cluster analysis suggests that tributary and lake monitoring stations can be consolidated. Reducing the number of parameters and stations frees up resources for increased monitoring elsewhere.  相似文献   

5.
Adsorption of arsenic and chromium by mixed magnetite and maghemite nanoparticles from aqueous solution is a promising technology. In the present batch experimental study, a commercially grade nano-size ‘magnetite’, later identified in laboratory characterization to be mixed magnetite–maghemite nanoparticles, was used in the uptake of arsenic and chromium from different water samples. The intent was to identify or develop a practical method for future groundwater remediation. The results of the study showed 96–99% arsenic and chromium uptake under controlled pH conditions. The maximum arsenic adsorption occurred at pH 2 with values of 3.69 mg/g for arsenic(III) and 3.71 mg/g for arsenic(V) when the initial concentration was kept at 1.5 mg/L for both arsenic species, while chromium(VI) concentration was 2.4 mg/g at pH 2 with an initial chromium(VI) concentration of 1 mg/L. Thus magnetite–maghemite nanoparticles can readily adsorb arsenic and chromium in an acidic pH range. Redox potential and pH data helped to infer possible dominating species and oxidation states of arsenic and chromium in solution. The results also showed the limitation of arsenic and chromium uptake by the nano-size magnetite–maghemite mixture in the presence of a competing anion such as phosphate. At a fixed adsorbent concentration of 0.4 g/L, arsenic and chromium uptake decreased with increasing phosphate concentration. Nano-size magnetite–maghemite mixed particles adsorbed less than 50% arsenic from synthetic water containing more than 3 mg/L phosphate and 1.2 mg/L of initial arsenic concentration, and less than 50% chromium from synthetic water containing more than 5 mg/L phosphate and 1.0 mg/L of chromium(VI). In natural groundwater containing more than 5 mg/L phosphate and 1.13 mg/L of arsenic, less than 60% arsenic uptake was achieved. In this case, it is anticipated that an optimum design with magnetite–maghemite nanoparticles may achieve high arsenic uptake in field applications.  相似文献   

6.
ABSTRACT: Inputs of copper‐based crop protectants from tomato fields grown under plastic mulch agriculture (plasticulture) to an estuarine creek were investigated. Copper was measured in runoff from diverse land‐uses including conventional agriculture, plasticulture, residences, and natural areas. Water column and sediment copper concentrations were measured in plasticulture and control (nonagriculture) watersheds. Copper concentrations in plasticulture‐impacted creeks exceeded background levels episodically. High concentrations occurred during or immediately after runoff‐producing rains. Concentrations of 263 μg/L total copper and 126 μg/L dissolved copper were measured in a tidal creek affected by plasticulture; concentrations exceeded the shellfish LC50 values and the water quality criteria of 2.9 μg/L dissolved copper. Control watersheds indicated background water column levels of ≤ 4 μg/L dissolved copper with similar copper levels during periods with and without rain. The copper concentrations in tomato plasticulture field runoff itself contained up to 238 μg/L dissolved copper. Copper concentrations in runoff from other land‐uses were less than 5 μg/L dissolved copper. Creek sediment samples adjacent to a plasticulture field contained significantly higher copper concentrations than sediments taken from nonplasticulture watersheds.  相似文献   

7.
通过对2012年4月~2013年3月九寨沟白水河不同断面水样分析,研究了《地表水环境质量标准》(GB3838—2002)中表1“地表水环境质量标准基本项目”的含量变化,并对铬、镉、硒、铜、汞、锌、铅、砷、氨氮、高锰酸盐指数进行污染状况评价。结果显示:镉、铜、汞、锌、铅均未检出;对铬、砷、硒、氨氮、高锰酸盐指数等有检出项目进行单项污染指数和内梅罗综合污染指数评价,水样中铬、砷、硒、氨氮、高锰酸盐指数全年监测平均浓度分别为0.294μg/L、0.024μg/L、0.084μg/L、0.187mg/L、0.695mg/L,用国家水质环境标准的一级标准,所有监测点位(PN〈1)未超标。从单因子污染指数来看,高锰酸盐指数在4月、7月、10月P,〉1,属于轻度污染,初步推断人为活动所致。通过本文的研究发现九寨沟水质依然较好,未受到污染。  相似文献   

8.
An assessment of the heavy metal content and biological pollution burden of an abattoir dumpsite, an automobile carwash, the Ikpoba River, and a private water borehole located near the abattoir dumpsite was conducted in Benin City in Southern Nigeria, during the rainy and dry seasons. The water samples’ pH was lower than the permissible values, with the river water displaying color and possessing a slight odor. Iron concentrations exceeded the permissible limits for drinking water at all four of the sampling stations in the study area, although not in samples collected from the control station, station 5, a public water borehole that is located some distance away. Lead values were higher than drinking water standards in the samples collected from stations 1 through 4, with some exceptions during the rainy season. Copper, nickel, arsenic, chromium, and aluminum were detected in three out of the four sampling stations located within the study area. However, these metals were detected at levels that were within regulatory limits. The detection of three metals (iron, lead, and zinc) within the study area at levels exceeding drinking water limits suggested that a complete cycle of movement of pollutants into the sampling stations had occurred. Significant biological presences were also detected, as the Ikpoba River water had a standard plate count (SPC) of 130 most probable number (MPN) and a 22 MPN presumptive coliform count (PCC) or 22 MPN. However, Escherichia coli (E. coli) confirmatory tests recorded less than 2 MPN in both seasons. The study has shown that the quality of water in the river may be compromised by effluent discharges from the dumpsite and the carwash channel. Therefore, this situation requires more stringent enforcement of local environmental laws and maintenance of safe distances between domestic and industrial waste sources and domestic or private water wells.  相似文献   

9.
巢湖水中邻苯二甲酸酯安全性评价   总被引:1,自引:0,他引:1  
本文测定了5种PAEs在巢湖水中的质量浓度,邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯和邻苯二甲酸二异辛酯在所有采样点位均有检出,邻苯二甲酸二甲酯的最高质量浓度为3.15μg/L、邻苯二甲酸二乙酯的最高质量浓度为1.82μg/L、邻苯二甲酸二丁酯的最高质量浓度为12.95μg/L,邻苯二甲酸二异辛酯最高为7.21μg/L,未检出邻苯二甲酸二正辛酯。运用数学模型对PAEs在水中的环境行为进行了安全性评价,结果显示巢湖水受到邻苯二酸酯不同程度的污染。  相似文献   

10.
Stoeckel, James A., Jade Morris, Elizabeth Ames, David C. Glover, Michael J. Vanni, William Renwick, and María J. González, 2012. Exposure Times to the Spring Atrazine Flush Along a Stream-Reservoir System. Journal of the American Water Resources Association (JAWRA) 48(3): 616-634. DOI: 10.1111/j.1752-1688.2011.00633.x Abstract: We used enzyme-linked immunosorbent assay to examine reservoir-mediated shifts in spring to fall exposure of aquatic organisms to the spring atrazine pulse over four years in a Midwestern stream-reservoir system. Peak atrazine concentrations in the major inflowing stream exceeded 10 μg/l in all four years. The reservoir had a beneficial effect in two of four years by diluting atrazine below the 10 μg/l threshold. However, during the other two years, exposure times above 10 μg/l were approximately doubled in the reservoir compared to the major inflowing stream. Thresholds of 3 and 5 μg/l were exceeded during all four years in the reservoir. The uplake and downlake reservoir sites were four to five times more likely to exceed these thresholds and aquatic organisms were subjected to longer exposure times above these thresholds compared to the inflowing stream. Release of elevated atrazine concentrations from the reservoir extended exposure times in the outflowing stream. This effect was most pronounced just below the dam. Aquatic organisms upstream of the reservoir were most likely to experience acute exposures whereas organisms within and immediately downstream of the reservoir were more likely to experience chronic exposures. The ubiquity of reservoirs and the annual spring herbicide flush highlight the importance of considering the presence and relative location of reservoirs when assessing risk to aquatic communities as well as locations of drinking water intakes.  相似文献   

11.
ABSTRACT: The Great Flood of 1993 inundated more than 355,000 ha of illinois cropland, creating great concern for the possible contamination of farmland by herbicides. The objective of this study was to assess the herbicide contamination of floodwaters and farmland due to the great flood of 1993. Floodwater samples were collected between August 5 and December 20, 1993, at the Horseshoe Lake State Game Reserve in Alexander County, Illinois, USA. Water and suspended sediment were tested separately for the more commonly used herbicides in Illinois and the midwestern USA: alachior, atrazine, and cyanazine. These herbicides were detected in the floodwater samples, but concentrations were all below the health advisory concentration of 3 μg/L established for drinking water by the United States Environmental Protection Agency. No herbicides were detected in the suspended sediment. After the recession of the flood, soil samples from flooded and non-flooded corn fields were collected for comparison. Soil samples taken from two out of three sampling locations had a 0.4 to 0.8 μg/kg increase in atrazine at the flooded verses the non-flooded sites. Concentrations were 500 to 1,000 times lower than the recommended 1 mg/kg rate at which this herbicides typically applied to soil.  相似文献   

12.
Disposal and beneficial-use options for street sweeping residuals collected as part of routine roadway maintenance activities in Florida, USA, were assessed by characterizing approximately 200 samples collected from 20 municipalities. Total concentrations (mg/kg or μg/kg) and leachable concentrations (mg/L or μg/L) of 11 metals and a number of organic pollutant groups (volatile organics, semi-volatile organics, pesticides, herbicides, carbamates) in the samples were measured. The synthetic precipitation leaching procedure (SPLP) was performed to evaluate the leachability of the pollutants. From the total metal analysis, several metals (e.g., arsenic, barium, chromium, copper, nickel, lead, and zinc) were commonly found above their detection limits. Zinc was found to have the highest mean concentration of all metals measured (46.7 mg/kg), followed by copper (10.7 mg/kg) and barium (10.5 mg/kg). The metal with the smallest mean concentration was arsenic (0.48 mg/kg). A small fraction of the total arsenic, barium, lead, and zinc leached in some samples using the SPLP; leached concentrations were relatively low. A few organic compounds (e.g., 4,4′-DDT, endrin, and endosulfan II) were detected in a limited number of samples. When the total and leaching results were compared to risk-based Florida soil cleanup target levels and groundwater cleanup target levels, the street sweepings were not found to pose a significant human-health risk via direct exposure or groundwater contamination.  相似文献   

13.
ABSTRACT: Studies were conducted to analyze the presence of 11 selected pesticides in 12 surface water supply intakes in the Piedmont and coastal plain regions of North Carolina. Samples were assayed using enzyme linked immunosorbent assays (ELISAs). Samples with pesticide detection of 1 μg/L or greater were extracted and confirmed using gas chromatography/mass spectrometry (GC/MS). Detection limits of the immunosorbent assays for pesticide residues were generally an order of magnitude higher than GC/MS. Atrazine was detected in approximately 45 percent of the samples, and on two occasions was at or above the lifetime Maximum Contaminant Level of 3.0 μg/L set by the Environmental Protection Agency for an annual average in finished drinking water. Metolachlor was detected in 58 percent of the samples. Of the remaining nine pesticides, including carbaryl, aldicarb, 2,4‐D, chiorpyrifos, acetochlor, methomyl, carbofuran, alachlor, and chlorothalonil, only aldicarb, 2,4‐D, and chlorpyrifos were detected in less than 9 percent of the samples for each pesticide.  相似文献   

14.
15.
ABSTRACT: This study was undertaken to investigate the cost effectiveness of selected arsenic avoidance methods. Annual costs of reverse osmosis (RO), activated alumina (AA), bottled water, and rented and purchased water coolers for various household sizes in Maine were compared. Relative ranking of systems shows that RO ($411 annually) is the most cost effective, followed by AA ($518) and one‐gallon jugs of water ($321 to $1,285), respectively, for households larger than one person. One‐gallon jugs ($321) followed by 2.5‐gallon jugs ($358) of water were found to be the most cost effective for households of one person or for households with arsenic III concentrations of 0.02 to 0.06 mg/L and arsenic V concentrations of 0.08 to 1.0 mg/L. Point‐of‐entry systems and water coolers were not found to be cost effective under any of the study's conditions. The research reported here will help states make more definitive treatment recommendations to households regarding the cost effectiveness of alternative treatment systems to reduce arsenic concentrations below 0.01 mg/L. While arsenic removal technologies are improving, which enhances removal rates and reduces costs, the major insights from this analysis appear to be reinforced by technological improvements.  相似文献   

16.
建立了顶空气相色谱法同时测定水中甲醛、乙醛、丙烯醛的方法。目标化合物连续测定9次的相对标准偏差分别为0.01,1.89,3.54;检出限分别为0.03μg/L,5.68μg/L,10.3μg/L,实际水样加标回收率在98%~101%。方法简便,快速,灵敏度高,基体干扰小。适用于地表水、地下水和工业废水中甲醛、乙醛、丙烯醛的同时、快速测定。  相似文献   

17.
Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.  相似文献   

18.
Modeling flow and nitrate fate at catchment scale in Brittany (France)   总被引:2,自引:0,他引:2  
In the intensive pig-farming (Sus scrofa) area of Brittany (western France), many surface and subsurface water resources are contaminated by nitrate (NO3) with concentrations that chronically exceed the European Community 50 mg L(-1) drinking standard. To ensure sustainable water supply, the fate of NO3 must be considered in both surface water and ground water. The fate of N was investigated in a Britain catchment, the Co?t-Dan watershed, with an integrated management tool: the hydrological SWAT model coupled with the ground water model MODFLOW, and its companion contaminant and solute transport model MT3DMS. The model was validated with respect to water quantity during a 6-yr period and for the NO3 concentration during a 44-mo period, at two gauging stations in the catchment. The coupled models reproduced accurately the measurements. At the basin outlet, the Nash-Sutcliffe coefficients were 0.88 for monthly flow for the entire period and 0.87 for monthly N load. Alternative scenarios were simulated and showed potential benefits of decreasing manure application from 210 to 170 kg N ha(-1) as required by the European Commission Nitrates Directive.  相似文献   

19.
Arsenic is a commonly occurring toxic metal in natural systems and is the root cause of many diseases and disorders. Occurrence of arsenic contaminated water is reported from several countries all over the world. A great deal of research over recent decades has been motivated by the requirement to lower the concentration of arsenic in drinking water and the need to develop low cost techniques which can be widely applied for arsenic removal from contaminated water. This review briefly presents iron and aluminium based adsorbents for arsenic removal. Studies carried out on oxidation of arsenic(III) to arsenic(V) employing various oxidising agents to facilitate arsenic removal are briefly mentioned. Effects of competing ions, As:Fe ratios, arsenic(V) vs. arsenic(III) removal using ferrihydrite as the adsorbent have been discussed. Recent efforts made for investigating arsenic adsorption on iron hydroxides/oxyhydroxides/oxides such as granular ferric hydroxide, goethite, akaganeite, magnetite and haematite have been reviewed. The adsorption behaviours of activated alumina, gibbsite, bauxite, activated bauxite, layered double hydroxides are discussed. Point-of-use adsorptive remediation methods indicate that Sono Arsenic filter and Kanchan™ Arsenic filter are in operation at various locations of Bangladesh and Nepal. The relative merits and demerits of such filters have been discussed. Evaluation of kits used for at-site arsenic estimation by various researchers also forms a part of this review.  相似文献   

20.
Residual herbicides regularly used in conjunction with conservation tillage to produce corn ( L.) and soybean [ (L.) Merr] are often detected in surface water at concentrations that exceed their U.S. maximum contaminant levels (MCL) and ecological standards. These risks might be reduced by planting glyphosate-tolerant varieties of these crops and totally or partially replacing the residual herbicides alachlor, atrazine, linuron, and metribuzin with glyphosate, a contact herbicide that has a short half-life and is strongly sorbed to soil. Therefore, we applied both herbicide types at typical rates and times to two chisel-plowed and two no-till watersheds in a 2-yr corn/soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat-red clover ( L.- L.) rotation and monitored herbicide losses in surface runoff for three crop years. Average dissolved glyphosate loss for all tillage practices, as a percentage of the amount applied, was significantly less ( ≤ 0.05) than the losses of atrazine (21.4x), alachlor (3.5x), and linuron (8.7x) in corn-crop years. Annual, flow-weighted, concentration of atrazine was as high as 41.3 μg L, much greater than its 3 μg L MCL. Likewise, annual, flow-weighted alachlor concentration (MCL = 2 μg L) was as high as 11.2 and 4.9 μg L in corn- and soybean-crop years, respectively. In only one runoff event during the 18 watershed-years it was applied did glyphosate concentration exceed its 700 μg L MCL and the highest, annual, flow-weighted concentration was 3.9 μg L. Planting glyphosate-tolerant corn and soybean and using glyphosate in lieu of some residual herbicides should reduce the impact of the production of these crops on surface water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号