首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
为了揭示注气压力对置换煤层瓦斯效应的影响,开展了等压扩散和高压注气2种条件下CO_2对煤中CH_4置换试验研究。试验结果表明:在置换源气体充入量相等的条件下等压扩散试验中CO_2对煤中CH_4的置换量大于高压注气试验的置换量,且等压扩散条件下CO_2置换CH_4效率维持在0.44 cm~3/cm~3左右,而高压注气条件下CO2置换CH_4效率却随注入量的增加而持续增加,但其增加率逐渐衰减。等压扩散条件下吸附平衡后系统总压略有下降,降幅一般为8%左右;高压注气条件下吸附平衡后系统总压呈持续上升规律,最大增幅为60%。研究成果对该项技术工程应用的启示是:井下煤层注气置换/驱替煤层瓦斯时,不一定要追求高的注气压力,采用低压注气也可收到良好的促排瓦斯效果,又能大幅度提高注气的安全可靠性。  相似文献   

2.
为研究不同注气压力与注气温度对CO2置换驱替煤层CH4的影响规律,利用Materials Studio分子动力学模拟软件,通过煤体在2元组分混合气体间的竞争吸附量、竞争吸附热及能量分布等变化规律,从微观研究煤吸附CH4与CO2之间的机理,并利用物理实验平台,选用3种高变质程度煤进行注CO2置换驱替CH4实验。结果表明:同一种变质程度煤,随着注气压力或注气温度的增大,置换率呈增长趋势、驱替比呈下降趋势、CO2突破时间变短;相同注气压力与注气温度时煤的变质程度越高,置换效率越大、驱替比越小、CO2突破时间越长。并且注气压力对于CO2置换驱替CH4的效果要优于注气温度。  相似文献   

3.
注气压力是煤层注气促排瓦斯工程技术的关键技术参数。为了研究注气压力对不同注源气体置驱煤中CH_4效应的影响,采用含瓦斯颗粒煤垂直应力载荷条件下向实验室注气模拟试验方法,开展1.25 MPa垂直载荷条件下无烟煤注入He、N_2和CO_2等气体置驱煤中CH_4的模拟试验。结果表明:在突破时间内注源气体全部滞留在煤层内;超过突破时间后,注源气体逐步从出口流出,其滞留率逐渐减小,最终只显现驱替作用。注源气体的突破时间随注气压力的增加而减少,随注源气体吸附性由强到弱而减少。置驱率由置换作用和驱替作用及其配比关系共同决定,其与注源气体吸附性强弱没有明显的关系,且注气压力越高置驱效率越高。  相似文献   

4.
为探究冷冻取芯过程煤芯瓦斯解吸特性,基于模拟试验的相似性,依托自主研发的含瓦斯煤冷冻取芯响应特性测试平台,开展不同变质程度煤样(长焰煤、贫瘦煤、无烟煤)及不同吸附平衡压力(1.0,2.0,3.0,4.0 MPa)下冷冻取芯过程煤芯瓦斯解吸特性试验研究。研究结果表明:冷冻取芯过程中,煤芯瓦斯解吸量与吸附平衡压力及煤变质程度呈正相关关系;在煤芯瓦斯解吸过程中存在倒吸现象,煤与瓦斯初始吸附平衡压力越大,煤的变质程度越高,倒吸开始时间越迟;冷冻取芯过程中,瓦斯解吸速度与吸附平衡压力及煤变质程度呈正相关关系,且瓦斯解吸速度随吸附平衡压力及煤变质程度变化曲线符合幂函数关系。  相似文献   

5.
为观察含CH_4煤岩注入CO_2后力学和渗透性能的变化,用自制三轴吸附解吸渗流试验装置开展试验,研究型煤试件内气体种类和注气压力对注CO_2煤岩强度、渗透性和应变等参数变化的影响。试验结果表明:含CH_4煤岩注入CO_2后,单轴压缩应力-应变曲线与未注入CO_2的总体变化趋势相同,但煤岩强度等参数随注气压力的变化而变化。注入等孔隙压CO_2后,含CH_4煤岩的强度和弹性模量均明显上升,但煤岩中CH_4渗透率呈现下降趋势;随着CO_2注入压力的增加,煤样的强度和弹性模量逐渐下降,而CH_4渗透率逐渐增强,注气压力每增加1 MPa,煤岩强度平均下降0.095MPa,CH_4气体渗透率平均增加1 m D。  相似文献   

6.
为了深入探讨水分对煤中瓦斯解吸特性的影响,采用试验和理论分析相结合的方法,按照原煤的固有粒度配比加工制作型煤,充分干燥后使其吸附平衡以模拟原始煤体,然后利用自制的试验装置实现水分自然进入含瓦斯煤,再测试水分润湿含瓦斯煤过程中样品缸内的瓦斯压力变化情况。结果表明:水分润湿含瓦斯煤过程中样品缸内瓦斯压力不断升高,水分能置换出煤中吸附瓦斯;相同吸附平衡压力下,煤样含水率越高,水分占据的有效吸附位越多,累计瓦斯解吸量越大,当煤样含水率达到煤的极限吸水率时,累计瓦斯解吸量达到极限值;同一含水率条件下,随吸附平衡压力增长,煤样吸附饱和度逐渐增加,水分越难进入煤体内部细微孔隙,造成累计瓦斯解吸量逐渐增加,但增幅逐渐减小,随吸附平衡压力不断升高,极限瓦斯解吸量趋于一定值。  相似文献   

7.
为解决含瓦斯煤渗吸效应测试方法存在弊端、缺陷等问题,利用自制的等压泄压装置对煤样罐内的瓦斯压力进行连续监测,同时对含瓦斯煤在不同吸附平衡压力和不同含水率等压环境下的最大置换量与非等压环境下的最大置换量进行测试。结果表明:等压泄压装置的可行性(R)在98%~99.3%之间,可用于研究外加水分对煤中瓦斯的渗吸效应;等压环境下的最大置换量大于非等压环境下的最大置换量;相同吸附平衡压力下,随着含水率的增加,最大置换量的差值有减小的趋势;相同含水率下,随着吸附平衡压力的增加,最大置换量的差值亦有减小的趋势。因此,等压泄压装置为研究含瓦斯煤渗吸效应提供可靠的工具,使得到的研究结果更具有工程意义,从而为明晰水力化措施防突机理提供理论指导。  相似文献   

8.
为研究CO2驱替CH4过程中注气压力对气体解吸特性的影响,采用自主搭建的驱替实验平台,在0.6,0.8,1.0 MPa不同注气压力下进行驱替实验,研究CO2驱替CH4过程中煤层温度、气体浓度、置换效率和渗透率等变化规律。实验结果表明:提高CO2注气压力可提高CO2置换驱替煤层CH4的效果。随着注气压力增大,CH4累计解吸量增大,CO2突破时间越短,CO2封存量越大,置换效率升高,驱替比下降。注气压力为0.6,0.8,1.0 MPa时,CH4累计解吸量分别为90.2,94.1,97.8 L;CO2封存量分别为19.73,19.92,20.21 mL/g;置换效率由76.9%上升到80.2%再到82.9%,驱替比由3.28下降到3.17再到3.09。注气驱替CH4过程中煤层温度升高,可分为低速升温、高速升温和趋于平缓阶段。煤层温度最高变化量分别为9.4,11.5,12.7 ℃。同一注气压力下,煤层渗透率变化可分为缓慢增长、急剧下降和趋于稳定阶段。  相似文献   

9.
为研究煤的变质程度对煤矿火灾时期煤燃烧放热特性的影响,选取6种不同变质程度煤样作为试验样品,采用STA-449C型同步热分析仪进行热重(TG)试验。研究煤样的质量变化、放热量变化规律。通过对TG曲线进行一阶微分得到煤样失重速率(DTG)曲线。利用Freeman-Carrol模型计算各煤样的燃烧反应动力学参数。结果表明:失重率和最大失重速率随着煤样变质程度升高逐渐降低,DTG曲线近似符合Gauss分布;初始放热温度T_(f_0)随着煤样水分含量升高而升高;煤样变质程度升高,特征温度点T_1,T_3,T_(s_1)与T_4呈线性增加,T_(f_0)与T_(s_0)呈线性下降趋势变化;放热量随煤变质程度升高呈指数关系变化,相同温度时,煤样变质程度越高放热量越小;煤化程度越高,综合燃烧特性指数S越大,放热量越大,失水活化能、着火活化能与燃烧活化能均升高。  相似文献   

10.
为探究注气置换抽采煤层瓦斯的效果,揭示注弱吸附性气体N2在等压扩散和高压注入2种条件下置换煤中CH4的机理,采用自行搭建的含瓦斯煤多元气体置换试验装置,开展等压扩散和高压注入2种条件下注N2置换煤中CH4的试验研究.研究结果表明:在注N2量相同的条件下,等压扩散置换量始终高于高压注气置换量,在等压扩散下N2置换CH4效...  相似文献   

11.
为研究注CO2增产煤层气过程中注气温度对煤层渗透特性变化的影响,利用自主研发的CO2置换驱替CH4实验系统,在注气温度为40,50,60 ℃条件下进行CO2置换驱替CH4实验,定量分析置换驱替过程中出口气体流量、孔隙压力以及煤层渗透率等变化规律。研究结果表明:在实验测试的40~60 ℃范围内,提高CO2注入温度有助于产出更多的CH4及封存CO2,CO2注入温度越高,出口混合气体流量和CH4气体流量越大,呈现出先升高后降低并趋于稳定的变化趋势,实验结束时置换体积比分别为2.704,2.741和2.595,注气温度为60 ℃时驱替效果较好,每产出单位体积的CH4注入的CO2量最少;煤层孔隙压力随注气时间呈现先逐渐上升后趋于平稳的变化趋势,逐渐趋近注气压力0.8 MPa;注CO2置换驱替CH4及提高CO2注入温度会降低煤层的渗透性,注气温度恒定时,渗透率随注气时间增加呈现先逐渐降低后趋于平稳的变化规律,注气温度由40 ℃升至60 ℃时,渗透率从0.017 1×10-15 m2下降至0.009 8×10-15 m2,降低幅度为34.50%~42.69%。  相似文献   

12.
冷冻取芯过程煤样温度变化特性研究   总被引:1,自引:0,他引:1  
为探究冷冻取芯过程煤样温度变化特性,基于模拟试验的相似性,自主设计冷冻取芯模拟测试试验装置,选取榆家梁矿、首山一矿、六龙煤矿、九里山矿4个矿区不同变质程度煤样,用以测定瓦斯吸附平衡压力为0、1.0、2.0、3.0 MPa下冷冻取芯过程煤样的温度实时变化数据,并统计分析各条件下的数据。研究结果表明:冷冻取芯技术的冷冻效果与煤变质程度及瓦斯吸附平衡压力呈正相关关系;冷冻取芯对含瓦斯煤冷冻效果优于不含瓦斯煤;冷冻取芯对高变质煤冷冻效果优于低变质煤;冷冻取芯过程中,煤样温度随时间变化曲线符合指数函数关系。  相似文献   

13.
为研究多因素耦合对CO_2驱替CH_4置换效率的影响,选取潞安集团常村煤矿煤样,利用自主研发物理模拟试验平台测定置换效率,并采用Design Expert软件设计Box-Behnken试验,构建置换效率在三因素、三水平条件下的二次回归响应曲面模型,分析了煤体含水率、注气压强及注入温度三因素耦合对置换效率的影响。结果表明:置换效率随注气压强和注入温度增大而增大,随含水率增大而减小;对置换效率影响程度为含水率注气压强注入温度;二次项影响程度为注气压强和注入温度注入温度和含水率注气压强和含水率,且注气压强和注入温度间存在交互作用,注气压强和含水率、注入温度和含水率之间无交互作用。  相似文献   

14.
为明确CO_2与CH_4混合气体在煤中的扩散规律,建立不同宽度的石墨狭缝结构模型代替复杂的煤结构,运用分子动力学方法,研究CO_2与CH_4浓度比、温度、气体压力和储层孔径等因素对甲烷扩散性能的影响。研究结果表明:随着CO_2浓度的增大,甲烷的扩散系数降低;随着气体压力的增大,甲烷的扩散能力以及扩散系数均有明显的降低,但降低速率趋于平缓;较高的温度有助于甲烷的扩散,但作用效果并不明显;随着储层孔径的增大,甲烷的扩散系数越大。扩散系数与孔径呈现对数函数关系,与压力、CO_2浓度和温度呈指数函数关系。出现上述结果的主要原因是CH_4和CO_2的竞争吸附,以及甲烷分子和狭缝表面之间范德华力的不同造成的。  相似文献   

15.
为了研究常压不同条件下煤样对N2/CO2/CH4单组分气体的吸附特性,以Langumir单分子层吸附模型为依据,对其吸附阶段进行划分,选择长焰煤、气肥煤和无烟煤分别进行了单组分气体吸附试验,探讨不同试验条件对煤吸附量的影响。结果表明:在常压阶段,煤对单组分气体的吸附规律服从Langumir单分子层吸附模型的第一阶段,吸附量与压力正相关;煤的变质程度、吸附温度及压力和吸附气体的种类是影响吸附量的主要因素,并在不同情况下对煤吸附量的影响程度不同;高低变质煤样对吸附量的影响大,而中等变质程度的影响小;温度是低压阶段影响吸附量的主要因素;吸附气体种类对吸附量的影响是由于其自身物化性质差异,相同试验条件下煤对3种单组分气体的吸附量从大到小为CO2、CH4、N2。  相似文献   

16.
为了更好地在煤层中封存CO_2,开展CO_2在煤体上跨越临界点的大范围吸附规律(随压力非单调递增)研究尤为重要。基于晶格热力学方程,建立了微孔吸附超临界流体的晶格模型,并对不同温度下不同变质程度煤样的CO_2的吸附等温线进行了预测,研究结果表明:CO_2在煤上的吸附等温线随压力增加先增大后减小,不再满足I型等温线;CO_2分子之间作用势εa虽然远小于CO_2分子与孔壁之间的作用势εs,但忽略εa将导致理论吸附量与实测吸附量误差变大;作用势εs与温度正相关,而εa与温度负相关。晶格理论模型(εa≠0)拟合CO_2在煤上吸附出现极值的等温线效果良好,相关系数均在0.99以上,其对不同温度下不同变质程度煤的CO_2的吸附等温线进行预测结果与实测结果基本一致,其相对误差不超过5%。  相似文献   

17.
为揭示煤吸附CH_4和CO_2热力学机制,选取新疆硫磺沟的煤样进行不同温度下的CH_4和CO_2等温吸附试验,利用Langmuir、Freundlich、D-R吸附理论模型对等温吸附曲线进行拟合,基于吸附势能理论研究煤样吸附CO_2和CH_4的热力学特性。研究表明:不同温度条件下煤样吸附CH_4和CO_2曲线均符合Langmuir、Freundlich、D-R模型;CH_4和CO_2吸附势能均随着吸附量增大而降低,其等量吸附热和吸附熵变均随着吸附量增加呈上升趋势,并且CO_2的吸附势能、吸附热、吸附熵变均大于CH_4;CH_4和CO_2吸附熵随温度升高总体呈降低趋势,其吸附势能不仅受表面力场影响,也受吸附焓和吸附熵的影响;CO_2等量吸附热受分子间竞争及微孔填充的影响。吸附热力学参数能用来表征煤体吸附特性,可从热力学角度揭示煤体表面竞争吸附的实质。  相似文献   

18.
为揭示中高阶变质煤对超临界甲烷的吸附特性,更准确预测深部煤层气资源量和评判煤层气(瓦斯)抽采效果,选取4个矿区不同变质程度中高阶煤样,采用重量法进行等温吸附试验,并基于过剩吸附理论和Langmuir单层吸附理论,分析甲烷超临界状态下煤吸附甲烷的吸附相密度、吸附甲烷层数和吸附量等吸附特性。结果表明:试验得到的过剩吸附量随压力增大出现峰值;低压状态下,绝对吸附量随压力增加而增大,甲烷在煤表面表现为单分子层排列,接近临界压力4.59 MPa时,增量变缓并趋于稳定,超临界状态下甲烷在煤颗粒表面以单分子层吸附为主,局部逐渐出现2层吸附;同温同压下绝对吸附量与变质程度正相关,无烟煤极限吸附量为中阶烟煤的2倍左右。  相似文献   

19.
为了研究不同变质程度煤在低温氧化自燃过程中的特性,以及煤样变质程度对煤自燃过程的影响,利用程序升温试验系统研究了不同变质程度煤在低温氧化阶段气体与特征温度变化规律。通过计算其耗氧速率、放热强度,分析了耗氧速率、放热强度与温度之间的对应关系。同时分析了煤样变质程度对CO、CO2气体及耗氧速率、放热强度的影响规律。根据程序升温的试验条件和阿伦尼乌斯公式建立了CO与温度的计算模型,分析了该方程的线性回归直线斜率,计算了不同变质程度煤低温氧化活化能,分析并印证了煤样变质程度与活化能之间的关系。根据不同煤质工业分析指标试验结果,进一步阐述了各煤种主要煤质工业分析指标的差别,分析了主要指标与煤程序升温试验自燃氧化参数的相关性,同时分析了主要工业分析指标对各特征参数的影响。结果表明:煤在低温氧化自燃过程所产出的CO和CO2气体释放量、耗氧速率及放热强度均随温度升高而呈指数级增长;随煤样变质程度增加,CO和CO2气体、耗氧速率、放热强度变化较小;煤的变质程度越高,特征温度和活化能越大;煤样自燃的可能性越小,危险性越小;结合煤样工业分析与活化能发现,水分、灰分、挥发分含量与活化能呈负相关。  相似文献   

20.
根据煤与瓦斯突出"综合假说"理论,煤的物理力学性质在突出过程中扮演着重要的角色。利用大型煤与瓦斯突出模拟试验台为工具,选用粒径为5-10目、10-40目、40-80目,以及5-10目和10-40目不同粒级配比下的煤粒,在相同实验参数条件下制作成突出煤样,并分别进行煤与瓦斯突出模拟实验。结果表明:煤层吸附瓦斯是放热过程,煤体温度会不断增加,突出过程则正好相反。煤体的破碎程度越大(粒径越小),突出危险性程度就越高、发生突出的强度就越大;但突出强度大并不一定表现为粉碎率高,原因在于煤的破碎程度越高,进一步破碎的难度就越大,要达到相同破碎率所需的能量就越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号